[运动规划算法]Dubins曲线和Reeds-Shepp曲线

本文介绍了Dubins曲线与Reeds-Shepp曲线两种路径规划方法,这两种方法用于寻找在曲率约束下连接两个指定位置的最短路径。Dubins曲线适用于只能前进的车辆,而Reeds-Shepp曲线允许车辆倒退。文中详细解释了两种曲线的构成元素及其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Dubins曲线是在满足曲率约束和规定的始端和末端的切线方向的条件下,连接两个二维平面(即X-Y平面)的最短路径,并假设车辆行驶的道路只能向前行进。如果车辆也可以在反向行驶,则路径为Reeds–Shepp曲线。

Dubins曲线

在1957年, Lester Eli Dubins (1920–2010) 证明任何路径都可以由最大曲率的圆弧段与直线段组成(前提是连接两点之间的路径必须存在)。 换句话说,连接两点的最短路径将通过最大曲率的曲的圆弧和直线段的构成。

最佳路径有六种类型:RSR、RSL、LSR、LSL、RLR、LRL(R代表右转, L代表左转,L代表直行)。
)

Reeds-Shepp曲线

J Reeds和L Shepp证明Reeds Shepp Car从起点到终点的最短路径一定是下面的word的其中之一。word中的"|"表示车辆运动朝向由正向转为反向或者由反向转为正向。
在这里插入图片描述
Reeds and Shepp曲线的word所有组合不超过48种,所有的组合一一枚举如下:
在这里插入图片描述


RVIZ显示

红线表示Dubins曲线,绿线表示Reeds-Shepp曲线。
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


参考资料

1、半杯茶的小酒杯(自动驾驶运动规划-Reeds Shepp曲线)
2、Reeds-Shepp和Dubins曲线简介https://blog.csdn.net/robinvista/article/details/95137143
3、car_geometric_planner https://github.com/zwkcoding/car_geometric_planner.git

### Reeds-Shepp 曲线算法解释 Reeds-Shepp曲线由J.A.ReedsL.A.Sheep于1990年提出,旨在解决汽车既能前进又能倒车情况下的最优路径问题[^2]。相比于仅能前移的Dubins曲线,这种扩展显著提升了复杂环境中的路径优化能力。 #### 运动模式特点 该模型允许车辆执行三种基本操作:直行、转向左侧行驶以及转向右侧行驶;特别之处在于它不仅支持正向行驶还兼容反向移动。这赋予了其更强灵活性,在狭窄空间内找到更短捷径成为可能[^1]。 #### 算法核心原理 为了计算两点间最短路径,Reeds-Shepp算法通过一系列几何变换来简化原始问题: - **坐标变换**:调整起始位置至原点并设定初始方向为X轴正向。 - **时间翻转(time-flip)**:处理含有后退动作的情况,即将部分路段视为逆序遍历。 - **反射变换(reflect)**:当目标方位角超过特定阈值时应用此方法改变参照系。 - **后向变换(backwards)**:用于转换最终得到的结果回到实际物理场景中去。 这些技术手段共同作用下实现了高效求解任意两姿态间的最小距离路径方案。 ### 实现方式概览 针对不同开发平台提供了多种编程语言版本的具体实施方案说明文档,包括但不限于C++ (适用于ROS框架)、Python脚本形式及MATLAB工具箱接口调用等方式[^3]。每种实现都遵循上述理论基础构建而成,并根据各自特性进行了适当优化适配工作。 ```cpp // C++ 示例代码片段展示如何初始化ReedsShepp类对象 #include "reeds_shepp.h" int main() { reeds_shepp::State start{0, 0, 0}; // 起点状态(x,y,theta) reeds_shepp::State goal{10, 5, M_PI_2}; // 终点状态 std::vector<reeds_shepp::Path> paths; bool success = reeds_shepp::computePaths(start, goal, &paths); } ``` ```python # Python 示例代码片段展示了简单的路径查询过程 from reeds_shepp import PathPlanner planner = PathPlanner() start_pose = (0., 0., 0.) goal_pose = (8., 4., np.pi / 2) path = planner.plan_path(start_pose=start_pose, end_pose=goal_pose) print(f"Total length of the planned path is {sum([segment.length for segment in path])}") ``` ### 应用领域探讨 在自动驾驶领域特别是低速无人驾驶物流配送车、自动泊车辅助系统等方面有着广泛应用前景。由于能够精确控制车辆完成较为复杂的机动动作序列而备受青睐。此外,在机器人学研究里同样扮演着重要角色——帮助机械臂规划避障轨迹或是指导多足行走装置探索未知地形等任务均可见到此类算法的身影。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xiewf8128

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值