相机安装位置之相对于地面的俯仰角的标定

本文探讨了在相机安装中如何通过欧拉角和旋转矩阵计算相机俯仰角,特别是在靶标水平和垂直放置的不同场景下。针对标定过程中的误差,提出了利用多次测量结果提高俯仰角标定精度的方法,适用于大俯仰角和小俯仰角的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在相机的安装过程中,可能存在只需要相机z轴与地平面的夹角(相机的俯仰角pitch)的场景,该场景中假使其他的角度偏差都为零(即roll yaw都为零),则可以将标定过程简化为如下:

O1为实际安装位置的相机坐标系;O2为虚拟的水平位置的相机坐标系;
W1为虚拟的水平位置的靶标坐标系;W2为实际位置的靶标坐标系。

O1绕x轴转alpha得到O2;O2绕x轴90°得到W1;W1绕z轴转theta得到W2。

根据欧拉角和旋转矩阵之间的关系,有:

R_O1_W2可以通过1求取相机靶标外参的方式得到,进而可以很容易的求得相机安装位置的俯仰角alpha了。

由于在求取相机靶标外参的过程中不可避免的存在一定的误差,接下来需要解决的问题就是如何使用多次测量的结果来提高标定俯仰角alpha的精度了。

 

以上是靶标水平放置的情形,适合俯仰角度较大的场景,如果俯仰角度较小,则需要将靶标垂直地面放置,具体推到过程如下:

 

 

 

### 雷达与相机联合标定概述 雷达与相机的联合标定旨在建立两者之间的几何关系,以便将它们采集的数据统一到同一个坐标系中。这一过程的核心在于求解激光雷达坐标系和相机坐标系间的刚性变换矩阵,通常由旋转和平移两部分构成[^2]。 #### 联合标定的主要目标 通过标定获得的外参可以用于多种场景下的多传感器数据融合,例如自动驾驶中的障碍物检测、环境感知以及路径规划等任务。具体来说,标定的目标是找到描述两个设备之间相对位置和方向的关系矩阵 \( T_{LC} \),其中包含旋转矩阵 \( R \) 和平移向量 \( t \)[^1]。 --- ### 常见的联合标定方法 以下是几种常见的激光雷达与相机联合标定的技术: #### 方法一:基于棋盘格的手动调整法 传统方式依赖于手动调节相机的姿态参数(如偏航角 yaw、俯仰角 pitch 和横滚角 roll),并通过观察点云投影至图像上的偏差来进行逐步优化。尽管此方法简单易懂,但由于人为干预较多,其效率较低且难以达到较高的精度水平[^3]。 #### 方法二:全自动化的特征匹配算法 现代技术倾向于采用自动化手段完成整个流程。比如利用标准图案(通常是黑白相间分布均匀的方块阵列即所谓的“棋盘格”)作为共同参照物,在获取同步帧之后提取各自模态内的对应兴趣点并计算最优映射关系。此类策略不仅提高了工作效率还增强了最终结果可靠性。 #### 实现步骤说明 虽然不允许使用诸如‘首先’这样的引导词句,但仍可概括如下几个方面的工作要点: - **准备阶段** - 设计实验平台布置好待测装备,并确保二者视场重叠区域足够大能够捕捉足够的公共信息; - **数据收集环节** - 同步记录来自两种传感装置原始观测值序列; - **处理分析部分** - 应用特定软件工具包执行必要的数值运算得出所需转换参数集; 对于实际编程实践而言,OpenCV库提供了丰富的函数支持上述操作需求,下面给出一段伪代码展示如何调用这些功能接口实现基本功能框架构建: ```python import cv2 import numpy as np def calibrate_lidar_camera(lidar_points, image): # 定义世界坐标系中的三维点 (棋盘格角落的真实物理尺寸) objp = np.zeros((6*7, 3), dtype=np.float32) objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (7, 6)) if not ret: raise ValueError("未能在图片中发现有效的棋盘格") criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) refined_corners = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) _, rvec, tvec = cv2.solvePnP(objp, refined_corners, camera_matrix, dist_coeffs) rotation_mat, _ = cv2.Rodrigues(rvec) extrinsics = np.hstack([rotation_mat,tvec]) return extrinsics ``` 以上脚本片段展示了怎样借助 OpenCV 的 `solvePnP` 函数估计出相对于已知模型姿态的位置矢量 (`rvec`, `tvec`) ,进而得到完整的外部参数集合。 --- ### 注意事项 当实施任何类型的跨模式校准时,请务必注意以下几点建议以提高成功率及准确性: - 尽可能扩大视野范围使得更多配对样本参与进来有助于减少随机误差影响; - 对所有输入信号源做严格的时间戳标记保证时间一致性至关重要; - 如果条件允许的话尝试引入额外辅助测量仪器进一步验证所得结论可信度。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值