一、说明
在数学中,射影平面是扩展平面概念的几何结构。在普通欧几里得平面中,两条直线通常相交于一点,但也有一些直线对(即平行线)不相交。射影平面可以被认为是配备有平行线相交的附加“无穷远点”的普通平面。因此,投影平面中的任何两条不同的直线恰好相交于一点。
二、射影平面
2.1 直观认知
文艺复兴时期的艺术家在发展透视绘画技术的过程中,为这一数学主题奠定了基础。典型的例子是实射影平面,也称为扩展欧几里得平面。[1]这个例子虽然略有不同,但在代数几何、拓扑和射影几何中很重要,其中它可以用PG(2, R )、 RP^2或P _2 ( R ) 等不同的表示法表示。还有许多其他射影平面,既有无限的,如复射影平面,也有有限的,如法诺平面。
射影平面是二维射影空间。并非所有射影平面都可以嵌入3 维射影空间;这种可嵌入性是笛沙格定理这一性质的结果,并非所有射影平面都具有这种性质。
2.2 射影平面定义
射影平面由一组线、一组点以及点和线之间称为关联的关系组成,具有以下属性:
- 给定任意两个不同的点,它们都恰好有一条线相交。
- 给定任意两条不同的线,它们都恰好有一个点相交。
- 有四个点,没有一条线与其中两个以上的点相交。
第二个条件意味着不存在平行线。最后一个条件排除了所谓的退化情况(见下文)。 “重合”一词用于强调点与线之间关系的对称性质。因此,使用表达式“点P与线ℓ重合”来代替“ P在ℓ上”或“ ℓ通过P ”。
三、举两个射影平面例子
3.1 扩展欧几里得平面
要将普通欧几里得平面转换为射影平面,请按以下步骤操作:
- 与每类平行线(相互平行线的最大集合)关联一个新点。该点将被视为与其类中的每条线相关的事件。添加的新点彼此不同。这些新点称为无穷远点。
- 添加一条新线,该线被视为与无穷远处的所有点(且没有其他点)相交。这条线称为无穷远线 。
扩展结构是一个射影平面,称为扩展欧几里得平面或实射影平面。上面概述的用于获得它的过程称为“投影完成”或投影化。该平面也可以通过从视为向量空间的R 3开始来构造,请参见下面的§向量空间构造。
3.2 射影莫尔顿平面

莫尔顿平面的点是欧几里得平面的点,其坐标按通常的方式表示。为了从欧几里得平面创建莫尔顿平面,需要重新定义一些线。也就是说,它们的一些点集将发生变化,但其他线将保持不变。重新定义所有具有负斜率的线,使它们看起来像“弯曲”线,这意味着这些线的点保持负x坐标,但其余点被替换为具有相同y截距的线的点但只要x坐标为正, 斜率就会增加两倍。
莫尔顿平面具有平行类线并且是仿射平面。如前面的示例所示,可以对其进行投影以获得投影莫尔顿平面。笛沙格定理在莫尔顿平面或射影莫尔顿平面上都不是有效定理。
(参考地址:莫尔顿平面 - 维基百科,自由的百科全书 (wikipedia.org))
四、一个有限的例子
这个例子只有十三个点和十三条线。我们标记点 P 1 , ..., P 13和线 m 1 , ..., m 13。关联关系(哪些点在哪些线上)可以由以下关联矩阵给出。行由点标记,列由线标记。第i行和第j列中的 1表示点 P i位于直线 m j上,而 0(为了便于阅读,我们在这里用空白单元格表示)表示它们不相关。该矩阵采用 Paige-Wexler 范式。
Lines Points | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | m9 | m10 | m11 | m12 | m13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 1 | 1 | 1 | 1 | |||||||||
P2 | 1 | 1 | 1 | 1 | |||||||||
P3 | 1 | 1 | 1 | 1 | |||||||||
P4 | 1 | 1 | 1 | 1 | |||||||||
P5 | 1 | 1 | 1 | 1 | |||||||||
P6 | 1 | 1 | 1 | 1 | |||||||||
P7 | 1 | 1 | 1 | 1 | |||||||||
P8 | 1 | 1 | 1 | 1 | |||||||||
P9 | 1 | 1 | 1 | 1 | |||||||||
P10 | 1 | 1 | 1 | 1 | |||||||||
P11 | 1 | 1 | 1 | 1 | |||||||||
P12 | 1 | 1 | 1 | 1 | |||||||||
P13 | 1 | 1 | 1 | 1 |
为了验证使其成为射影平面的条件,请观察每两行恰好有一个公共列,其中出现 1(每对不同的点恰好位于一条公共线上),并且每两列恰好有一个公共行,其中出现 1。出现 1(每对不同的线恰好在一个点相交)。在多种可能性中,例如点P 1、P 4、P 5和P 8将满足第三条件。这个例子被称为三阶射影平面。
五、有限场平面
根据韦德伯恩定理,有限除法环必须是可交换的,因此是一个域。因此,这种构造的有限示例被称为“场平面”。将K视为具有素数p的q = p n 个元素的有限域会产生q 2 + q + 1 个点的射影平面。场平面通常用 PG(2, q ) 表示,其中 PG 代表射影几何,“2”是维度,q称为平面的阶(它比任何直线上的点数少 1) 。下面讨论的法诺平面用 PG(2, 2) 表示。上面的第三个例子是投影平面 PG(2, 3)。

法诺平面是由两个元素的场产生的投影平面。它是最小的射影平面,只有七个点和七条线。右图中,七个点显示为小球,七条线显示为六条线段和一个圆。然而,我们可以等效地将球视为“线”,将线段和圆视为“点”——这是射影平面中对偶性的一个例子:如果线和点互换,结果仍然是投影平面(见下文)。共线点(同一直线上的点)到共线点的七个点的排列称为平面的共线或对称。几何的直角线在组合下形成一个群,对于 Fano 平面,该群 ( PΓL(3, 2) = PGL(3, 2))有 168 个元素。
六、结束语
也许本文过于深奥,不适宜在CSDN上发布,然而,有许多学问是我们所接受教育所无法覆盖的。穷其一生,我们无法做出那么多的选择,然而真实的世界在摇晃,我们至少懂得它是在摇晃,不是别的。