【射影几何高级】射影平面的近代研究

一、说明

        在数学中,射影平面是扩展平面概念的几何结构。在普通欧几里得平面中,两条直线通常相交于一点,但也有一些直线对(即平行线)不相交。射影平面可以被认为是配备有平行线相交的附加“无穷远点”的普通平面。因此,投影平面中的任何两条不同的直线恰好相交于一点。

二、射影平面

2.1 直观认知

        文艺复兴时期的艺术家在发展透视绘画技术的过程中,为这一数学主题奠定了基础。典型的例子是实射影平面,也称为扩展欧几里得平面[1]这个例子虽然略有不同,但在代数几何拓扑射影几何中很重要,其中它可以用PG(2, R )、 RP^2或P _2 ( R ) 等不同的表示法表示。还有许多其他射影平面,既有无限的,如复射影平面,也有有限的,如法诺平面

        射影平面是二维射影空间。并非所有射影平面都可以嵌入3 维射影空间;这种可嵌入性是笛沙格定理这一性质的结果,并非所有射影平面都具有这种性质。

2.2 射影平面定义

射影平面由一组线、一组点以及点和线之间称为关联的关系组成,具有以下属性:

  1. 给定任意两个不同的点,它们都恰好有一条线相交。
  2. 给定任意两条不同的线,它们都恰好有一个点相交。
  3. 有四个点,没有一条线与其中两个以上的点相交。

        第二个条件意味着不存在平行线。最后一个条件排除了所谓的退化情况(见下文)。 “重合”一词用于强调点与线之间关系的对称性质。因此,使用表达式“点P与线重合”来代替“ P上”或“ 通过P ”。

三、举两个射影平面例子

3.1 扩展欧几里得平面

要将普通欧几里得平面转换为射影平面,请按以下步骤操作:

  1. 与每类平行线(相互平行线的最大集合)关联一个新点。该点将被视为与其类中的每条线相关的事件。添加的新点彼此不同。这些新点称为无穷远点
  2. 添加一条新线,该线被视为与无穷远处的所有点(且没有其他点)相交。这条线称为无穷远线 。

扩展结构是一个射影平面,称为扩展欧几里得平面实射影平面。上面概述的用于获得它的过程称为“投影完成”或投影化。该平面也可以通过从视为向量空间的3开始来构造,请参见下面的§向量空间构造

3.2 射影莫尔顿平面 

莫尔顿 平面。向下和向右倾斜的线在与 y轴交叉的地方弯曲。

        莫尔顿平面的点是欧几里得平面的点,其坐标按通常的方式表示。为了从欧几里得平面创建莫尔顿平面,需要重新定义一些线。也就是说,它们的一些点集将发生变化,但其他线将保持不变。重新定义所有具有负斜率的线,使它们看起来像“弯曲”线,这意味着这些线的点保持负x坐标,但其余点被替换为具有相同y截距的线的点但只要x坐标为正, 斜率就会增加两倍。

        莫尔顿平面具有平行类线并且是仿射平面。如前面的示例所示,可以对其进行投影以获得投影莫尔顿平面笛沙格定理在莫尔顿平面或射影莫尔顿平面上都不是有效定理。

        (参考地址:莫尔顿平面 - 维基百科,自由的百科全书 (wikipedia.org)

四、一个有限的例子 

        这个例子只有十三个点和十三条线。我们标记点 P 1 , ..., P 13和线 m 1 , ..., m 13。关联关系(哪些点在哪些线上)可以由以下关联矩阵给出。行由点标记,列由线标记。第i行和第j列中的 1表示点 P i位于直线 m j上,而 0(为了便于阅读,我们在这里用空白单元格表示)表示它们不相关。该矩阵采用 Paige-Wexler 范式。

Lines

Points

m1m2m3m4m5m6m7m8m9m10m11m12m13
P11111
P21111
P31111
P41111
P51111
P61111
P71111
P81111
P91111
P101111
P111111
P121111
P131111

        为了验证使其成为射影平面的条件,请观察每两行恰好有一个公共列,其中出现 1(每对不同的点恰好位于一条公共线上),并且每两列恰好有一个公共行,其中出现 1。出现 1(每对不同的线恰好在一个点相交)。在多种可能性中,例如点P 1、P 4、P 5和P 8将满足第三条件。这个例子被称为三阶射影平面。 

五、有限场平面

        根据韦德伯恩定理,有限除法环必须是可交换的,因此是一个域。因此,这种构造的有限示例被称为“场平面”。将K视为具有素数p的q = n 个元素的有限域会产生2 + q + 1 个点的射影平面。场平面通常用 PG(2,  q ) 表示,其中 PG 代表射影几何,“2”是维度,q称为平面的(它比任何直线上的点数少 1) 。下面讨论的法诺平面用 PG(2, 2) 表示。上面的第三个例子是投影平面 PG(2, 3)。

法诺平面。点显示为点;线显示为线或圆。

        诺平面是由两个元素的场产生的投影平面。它是最小的射影平面,只有七个点和七条线。右图中,七个点显示为小球,七条线显示为六条线段和一个圆。然而,我们可以等效地将球视为“线”,将线段和圆视为“点”——这是射影平面中对偶性的一个例子:如果线和点互换,结果仍然是投影平面(见下文)。共线点(同一直线上的点)到共线点的七个点的排列称为平面的共线对称。几何的直角线在组合下形成一个,对于 Fano 平面,该群 ( PΓL(3, 2) = PGL(3, 2))有 168 个元素。

六、结束语

        也许本文过于深奥,不适宜在CSDN上发布,然而,有许多学问是我们所接受教育所无法覆盖的。穷其一生,我们无法做出那么多的选择,然而真实的世界在摇晃,我们至少懂得它是在摇晃,不是别的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值