【射影几何03】中心射影和透视射影

本文深入讲解中心射影和透视射影的数学概念,强调它们在几何学中的特殊情形和共通点。中心射影包括直线和面上的射影,透视射影关注线束和点列的对应。两者的核心区别在于分析视角,中心射影侧重个体点线,而透视射影聚焦于集合和线束。通过对偶性的讨论,揭示两者之间的内在联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        本篇叙述中心射影、透视射影的概念,其实中心射影就是透视射影的特殊情形。为了铺垫以后的三点论和四点论,的概念准备:

  • 射影映射(变换)前后,共线三点依然共线
  • 射影映射(变换)前后,共线四点的交比不变

二、中心射影

2.1 直线上的中心射影

        1 定义 : ξ , η是共面的两相异直线, O 是两直线外一点.对于直线 ξ上任一点 A, 设 A′是直线 O A 与η的交点, 则由 A 和 A′定义的直线ξ上点与η上点的对应叫直线中心射影,简,称为中心射影, O 是 射影中心.

注意:以上有几个特殊映射点

1)ξ , η平行时,认为其无穷远处相交,因而和过O的平行线也在无穷远处相交。无穷远点是个特殊点。(严格来说,无穷远点也有两个,但重合了)。

2)当ξ , η相交时,Q点是ξ上无穷远点在的η映射;P点是η上无穷远点的在ξ的映射。

3)当ξ , η相交时,交点D是两条直线的自映射点,即原像和映像重合。

4)考虑无穷远点是此类几何的必选项。

2.2 平面上的中心射影 

        定义:对于平面\pi\pi{}',O是两个平面外的点,O引出的射线\alpha\pi\pi{}'AA{}'AA{}'上的对应关系就是平面\pi\pi{}'上的中心射影。\alpha叫射影线,A是原像,A{}'是像点,平面\pi\pi{}'的交线s上的点是自对应点。 

        在\pi平面上的l线上点,投影到\pi{}'后,与l{}'线对应,因此,原像的ABC共线,射影后,A{}'B{}'C{}'依然共线。

三、透视映射

        定义1: 线束\large S(a,b,c......)与不通过中心S的直线s相交,得一点列s(A,B,C......)

,则点列s(A,B,C......)叫做线束\large S(a,b,c......)在直线s上的截影,如图3所示    

图3 线束的截影

        一句话概括:通过线束生成直线。

        定义2 点列s(A,B,C......)的点与不在底s上一点S连接,得一线束\large S(a,b,c......),则线束\large S(a,b,c......)叫做由点S投射到s(A,B,C......)的线束

图4 直线到线束的对应

         一句话:通过直线生成线束

        定义3 如果点列s(A,B,C......)是线束\large S(a,b,c......)在直线s上的截影,那么这个截影叫做从线束\large S(a,b,c......)到点列s(A,B,C......)一个透视对应

        直线和线束构成的映射就是透视映射。说到头,透视映射就是中心映射。然而,它关注的不是像点与原像点的对应。而是投射线与原像点(这里没有第二条线,所以不谈像点)的对应。这种对应关系是对偶的。

        定义4 如果两个点列与同一个线束成透视对应,那么这两个点列叫做透视点列,线束中心叫做透视中心,两点列中同在线束的一条直线上的两点叫做对应点

图5 一个线束在两条直线上的透视

         如图5所示,线束\large S(a,b,c......)分别在直线s和s'上的截影s(A,B,C......)与s'(A',B',C.'.....)成透视点列.

        定义5 如果两个线束与同一点列成透视对应,那么这两个线束叫做透视线束,点列的底叫做透视轴,两线束中交于透视轴上同一点的一对直线叫做对应直线

图6 线束与线束的对应关系

        如图6所示,由点S,S'分别投射到点列s(A,B,C......)所得的两个线束\large S(a,b,c......)\large S'(a',b',c'....)成透视线束.

        由上讨论可知,两个成透视对应的点列,其中对应点的连线必共点;两个成透视对应的线束,其对应线的交点必共线。

四、重要结论

  • 1 中心射影就是透视射影。但两者立场有高低。
  • 2 二两者不同在于,中心射影站在个别点线立场上分析,透视射影站在集合(线束)和点列立场上分析。
  • 3 中心射影中:对偶要素是【点,线】,透视射影中,对偶要素是【线束,点列】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值