您必须尝试的 4 种经典特征提取技术!

本文探讨了四种经典的图像特征提取技术:定向梯度直方图(HOG)、本地二进制模式(LBP)、加博尔过滤器和灰度共现矩阵(GLCM)。这些技术在计算机视觉领域,如图像分类、纹理分析、行人检测等任务中发挥重要作用。HOG有效检测边缘和形状,LBP描述局部纹理,GLCM捕捉纹理和结构的二阶统计信息,而加博尔过滤器擅长捕获频率和方向信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        特征提取如何实现?其手段并不是很多,有四个基本方法,作为AI工程师不能不知。因此,本篇将对四种特征提取给出系统的方法。

二、概述

        图像分类长期以来一直是计算机视觉领域的热门话题,并希望能够保持这种状态。为什么不应该呢?随着一次又一次的装备,它配备了机器来回答一个非常基本的问题!“我看到了什么?”尽管听起来引人入胜,但这个问题的答案不仅满足了人们对模仿我们自己的感知和决策能力的事物的渴望,而且开辟了无数的创造性可能性领域。生成式人工智能的最新进展通过利用这些辨别能力来创造创新和创造力的手段,从而改变了范式,以剪切优雅实现了显然不可逾越的壮举。然而,这个领域的每一个进步都围绕着视觉理解的概念,即有效辨别的能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值