【射影几何09】交比定律和迪萨格定律

本文探讨了射影几何中交比的概念,从定比分点出发,通过证明交比的射影不变性,展示了迪萨格定律的证明过程。文章揭示了交比在圆锥曲线中的应用,强调了交比在实际问题中的发现和运用策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、说明

二、概念演进

2.1 从定比分点说起

2.1 两个定比分点引出交比概念

三、交比射影不变性的证明。

3.1 定理描述

 3.2 从三角形面积入手

四、德萨格定律和证明

五、交比的线模式表示

六、结论


一、说明

        在射影几何中,映射不能保证线段长度一致,映射不能保证平行关系一致,映射不能角度的一致,也不能保证线段的比例关系一致,然而,能保证直线的一致,同时发现“交比”的一致性。进而,发现迪萨格定律。本文将围绕“交比”这个概念展开讨论。

二、概念演进

2.1 从定比分点说起

        定义:对于P1,P2决定的有向直线L上,存在分点P,那么,P将P1P2分成两个部分,P1P和PP2,因此存在分点定比λ。

                                \lambda =\frac{P1P}{PP2}

当P在P1P2的外侧,则λ为负值,下图用红色标注正方向,蓝色标注反方向,如图:

        强烈提示:直线P1P2是有方向的!!不要忽视这个规定。

2.1 两个定比分点引出交比概念

        将定比分点定义成两个,对于P1P2两点构成的直线L上,定义两个分点Q1和Q2,所以:

\lambda_1 =\frac{P1Q1}{Q1P2}

\lambda_2 =\frac{P1Q2}{Q2P2}

        交比的定义:

                        (P1,P2; Q1,Q2)=\frac{\lambda_1}{\lambda_2} =\frac{ \frac{P1Q1}{Q1P2}}{\frac{P1Q2}{Q2P2}}= \frac{P1Q1*Q2P2}{Q1P2*P1Q2}

    

        一般地,对于极点为P的射影线,横穿直线L1,和L2,如下图:

        那么,将A、B视为基点,AB构成原始有向直线段,C和D是两个分点,交比表示为:

        (A,B; C,D) = \frac{AC}{CB} * \frac{DB}{AD}

        在交比中,四个点是成对出现的。我们将其称之为两个点对(或者点偶)。

        定理 (交比的射影不变性)如图所示,过点P引四条相交直线构成射影线束,分别与另外两条直线交于A,B,C,D和A‘,B’,C‘,D’,则(A’,B';C‘,D’)=(A,B;C,D).即射影投影下,直线上被射影线束所分割的线段,这些线段的交比不变。

        这种交比之所以不变,是因为从P发出的各条射线角度固定引起的,下面我们证明这种交比只 和发射线束之间的角度有关系,因为发射角度不变,交比也不变。

三、交比射影不变性的证明

3.1 定理描述

        如下图:我们考察线l1和P的线束的焦点,试图得到:

公式 (1)

        它们构成若干三角形,我们这里从面积上考虑之。

 3.2 从三角形面积入手

        设射影中心到直线l1的距离为h。于是三角形PAC的面积可以用两种方式加以表达:

        上述通过同一个三角形两种表达,就导致用两个侧边、高,表示出底边。注意,这里高h是几个三角形共同拥有的。

         同理得到:

            带入公式(1)

        

        这说明,用任意直线被一组四条共点直线形成的线束(下文均简称为“线束”)切割,得到的四个点的交比的绝对值是一个定值。根据我们上面的推导,这个定值仅与四条直线之间的夹角相关。

        可以看到,交比实际上是各个射影角度构成的表达式,与被切割直线摆放位置,或被切的线段长度无关。

四、德萨格定律和证明

4.1 用交比的概念证明迪沙格定理。两个三角形对应顶点连线交于一点(三线共点),则对应边交点位于一条直线上(三点共线)。如下图所示,AA'、BB'和CC'共点(点P),则AB与A'B'的交点X,BC与B'C'的交点Y,CA与C'A'的交点Z,证明X,Y,Z三点在一条直线上 。

        分析:这里显然,X点和Y点能够连成一条直线,至于Z是不是在XY线上,正是我们需要说明的地方。基本思路是,通过X为极点的线束构成一个透视,通过Y为极点的线束构成一个透视,那么同样地,通过Z的线束也构成一个透视映射,这个Z点能落在XY连线上,就可以完成证明。

        连接XY,这时我们还不能确定点Z是否位于XY上,我们下面就是要证明点Z确实在XY上。设XY与PA'、PB'、PC'的交点分别为E、D、F。连接XP,连接YP,连接ZP。如下图所示。

        考虑从X发出的线束XP、XA、XE、XA'。它们都与直线PA'和PB'相交。交点分别是:P、A、E、A'和P、B 、D、B'。因而构成一个透视映射,由交比的不变性,得:

( PA;EA' ) = ( PB;DB' )

        类似地,考虑Y发出的线束YP、YB、YD、YB'。它们与直线PB'和PC'相交。交点分别是:P、B、D、B'和P、C、F、C'。由交比的不变性,得:

( PB;DB' ) = ( PC;FC' )

        由以上两个交比的等式,得到:

( PA;EA' ) = ( PC;FC' )

        因此。(P,A,E,A')和 ( P,C,F,C' )将出自一个透视映射S,且S的线束为:

SP,SAC, SEF,  SA'C',  于是,AC、EF、A'C'三线相交于一点S.

        由于已知AC和A'C'相交于Z,因为只有一个交点,因此,S和Z点重合;因而EF必须经过点Z,即点Z位于直线XY上。所以,我们最终证明了X、Y、Z三点共线。

五、交比的线模式表示

        交比这个概念在圆锥曲线上发挥作用,这里不得不说,其作用的原理。我们先回到交比的定义上来,如下图:

交比是:  (A,B;C,D)=\frac{AC}{BC}:\frac{AD}{BD}=\frac{sin\angle APC}{sin\angle BPD}:\frac{sin\angle APD}{sin\angle BPD}

这里用两条射线表示一个夹角,于是,引出交比的线束表示:

(PA,PB,PC,PD)=\frac{sin[PA,PC]}{sin[PC,PB]}\frac{sin[PA,PD]}{sin[PD,PB]}=(A,B;C,D)

        其中:sin[PA,PC] 等价于sin \angle A PC ;这里看起来并没有太多差别,不过放到圆锥曲线中,你就看出这个定义的非凡之处。

        从上图的表达中,我们能够看到(A,B;C,D)=(A',B';C',D')这似乎并不稀奇,那么更多的发现是什么呢?

        是不是有如下等价说法?:

(A,B;C,D) =\frac{AF}{EF}:\frac{A'D'}{D'E}

        是不是说:交比关系可以传递到圆内接四边形A'EFD'中呢? 或者反过来,圆内接四边形与某个射影交比有关呢?

六、结论

        在实际应用中,并不是去计算交比,而是发现构成交比的现场场景--即四线束射影投射到直线上。从上文我们对迪萨格定理证明中不难发觉,其巧妙点在于,发现X点构成透视射影,Y点构成透视射影;通过交比传递性,能够说明,Z点也是个透视射影,从而证明XYZ的共线性。

        其它基础知识:梅塞定理/反演/调和/蒙日定理/布洛卡定理/交比/彭塞列小定理/笛萨格定理/帕普斯定理/帕斯卡定理/布利安桑定理/坎迪定理/牛顿定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值