realsense相机+open3D保存点云并可视化

此博客介绍了一个Python程序,利用Intel RealSense D400系列摄像头捕获深度和颜色帧,并通过Open3D库将数据转换为.ply和.pcd格式的3D点云。程序首先配置并启动RealSense管道,然后实时获取帧数据。当用户按下'a'键时,程序会保存当前的点云。点云首先保存为.ply格式,然后通过读取.ply文件并转换为STL格式,最后将STL数据转换为.pcd格式。整个过程展示了从原始传感器数据到不同3D模型格式的转换流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • python程序:
    运行时先开启摄像头,键盘单按“a”时,可以保存当前点云。
    保存了.ply格式内容,且转换为.pcd格式并保存
    .ply文件可以通过meshlab进行查看。
import pyrealsense2 as rs
import numpy as np
import cv2
import open3d as o3d
import copy
import time
from helpers import *
import os

VISUALIZE = True
 
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
 
pipeline.start(config)
i=1
try:
    while True:
 
        # Wait for a coherent pair of frames: depth and color
        frames = pipeline.wait_for_frames()
        
        depth_frame = frames.get_depth_frame()
        
        color_frame = frames.get_color_frame()

        depth_intrin = depth_frame.profile.as_video_stream_profile().intrinsics
        profile = frames.get_profile()
        if not depth_frame or not color_frame:
            continue
 
        # Convert images to numpy arrays
        depth_image = np.asanyarray(depth_frame.get_data())
        #480*640
        color_image = np.asanyarray(color_frame.get_data())

        key = cv2.waitKey(1)
        if key == ord("a"):
            print("type of depth_image:",type(depth_image))
            print("shape of depth_image:",depth_image.shape)

            o3d_color = o3d.geometry.Image(color_image)
            o3d_depth = o3d.geometry.Image(depth_image)
            rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(o3d_color, o3d_depth,
                                                                            depth_scale=1000.0,
                                                                            depth_trunc=3.0,
                                                                            convert_rgb_to_intensity=False)

            intrinsics = profile.as_video_stream_profile().get_intrinsics()
            # 转换为open3d中的相机参数
            pinhole_camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
                intrinsics.width, intrinsics.height,
                intrinsics.fx, intrinsics.fy,
                intrinsics.ppx, intrinsics.ppy
            )

            o3d_result = o3d.geometry.PointCloud.create_from_rgbd_image(
                    rgbd_image,
                    pinhole_camera_intrinsic
                )

            o3d.io.write_point_cloud("/home/lt/Downloads/instance-segmentation-master/multiple_camera/1.ply", o3d_result)

            #ply to pcd
            mesh_ply = o3d.io.read_triangle_mesh("/home/lt/Downloads/instance-segmentation-master/multiple_camera/1.ply")
            mesh_ply.compute_vertex_normals()

            # V_mesh 为ply网格的顶点坐标序列,shape=(n,3),这里n为此网格的顶点总数,其实就是浮点型的x,y,z三个浮点值组成的三维坐标
            V_mesh = np.asarray(mesh_ply.vertices)

            print("ply info:", mesh_ply)
            print("ply vertices shape:", V_mesh.shape)
            # o3d.visualization.draw_geometries([mesh_ply], window_name="ply", mesh_show_wireframe=True)

            # ply -> stl
            mesh_stl = o3d.geometry.TriangleMesh()
            mesh_stl.vertices = o3d.utility.Vector3dVector(V_mesh)

            mesh_stl.compute_vertex_normals()
            # print("stl info:", mesh_stl)
            # o3d.visualization.draw_geometries([mesh_stl], window_name="stl")
            o3d.io.write_triangle_mesh("/home/lt/Downloads/instance-segmentation-master/multiple_camera/1.stl", mesh_stl)

            # stl/ply -> pcd
            pcd = o3d.geometry.PointCloud()
            pcd.points = o3d.utility.Vector3dVector(V_mesh)
            print("pcd info:", pcd)
            print("type of pcd:", type(pcd))
            # print("shape of pcd:", pcd.shape)
            o3d.visualization.draw_geometries([pcd], window_name="pcd")

            # save pcd
            o3d.io.write_point_cloud("/home/lt/Downloads/instance-segmentation-master/multiple_camera/1.pcd", pcd)

        # Apply colormap on depth image (image must be converted to 8-bit per pixel first)
        depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
 
        # Stack both images horizontally
        images = np.hstack((color_image, depth_colormap))
 
        # Show images
        cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
        cv2.imshow('RealSense', images)
 
        key = cv2.waitKey(1)
        # Press esc or 'q' to close the image window
        if key & 0xFF == ord('q') or key == 27:
            cv2.destroyAllWindows()
            break
 
 
finally:
 
    # Stop streaming
    pipeline.stop()
  • .ply文件
    PLY文件格式是Stanford大学开发的一套三维mesh模型数据格式,不同于三维引擎中常用的场景图文件格式和脚本文件,每个PLY文件只用于描述一个多边形模型对象(Object),该模型对象可以通过诸如顶点、面等数据进行描述,每一类这样的数据被称作一种元素(Element)。相比于现代的三维引擎中所用到的各种复杂格式,PLY实在是种简单的不能再简单的文件格式。

  • .pcd文件
    https://blog.csdn.net/qq_43049432/article/details/99288502?spm=1001.2101.3001.6650.17&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7Eessearch%7Evector-17.essearch_pc_relevant&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7Eessearch%7Evector-17.essearch_pc_relevant

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值