0. 和式作用的对象是 labels 时
P(y)=exp(yz)∑y′=01exp(y′z)
这里不要将分母代换为 exp(z)+1 ,而是:
P(y)=exp(yz)exp(yz)+exp((1−y)z)
实现分子和分母的协调;
1. 加和
注意下标的范围,尤其在双下标时;
∑1≤i<j≤nai+aj=(n−1)(a1+a2+⋯+an)=(n−1)∑iai
固定 i ,变化
j 的时候, (n−1)+(n−2)+⋯+1=n(n−1)2 ,共这么多加法式,又每一个加法式有两项 ai+aj ,故最终的元素个数为 n(n−1)n−1 个 a1 , 1+(n−2) 个 a2 ,…,也即每一个元素都有 n−1 项
2. 加和的平方
(∑i=1nai)2=∑i,jaiaj=∑i=1na2i+2∑1≤i<j≤naiaj
∑1≤i<j≤nij
,可以理解为
i
表示行号,
3. 样本方差
S2=1n−1∑i=1n(Xi−X¯)2=1n−1(∑i=1nX2i−nX¯2)
4. 常量与变量的四则运算
∑i=ab(A[i]−m)2=(b−a+1)m2+∑i=abA[i]2−2m∑i=abA[i]
5. 错位相乘在相加
nd+Nd(nd−1+Nd−1(nd−2+Nd−2⋅(⋯+N2n1)⋯))=∑k=1d⎛⎝∑ℓ=k+1dNℓ⎞⎠nk