测评人 - 董小胖
Livox Horizon(览沃浩界)介绍
Livox Horizon(览沃浩界)是大疆专为L3/L4自动驾驶打造的一款激光雷达。
与传统的采用机械旋转结构的激光雷达不同,浩界采用的是非重复式扫描方式。传统的机械激光雷达,通过电机带动整个激光头做圆周运动,其扫描方式通常呈360度线式扫描。这种扫描方式带来的后果是,线与线之间总会有间隙,线不够密集的情况下,存在漏检物体的可能性。而非重复式扫描的激光雷达,随着积分时间增大,点云视场覆盖率会持续增大,直至视场覆盖率接近100%。当然,与传统机械激光雷达相比,浩界的FOV较小且视场覆盖率取决于积分时间。
浩界(Horizon)主要参数如下:
浩界(Horizon)点云分布:
积分时间与视场覆盖率:
下图是不同积分时间下 浩界(Horizon) 的视场覆盖率,和当前市场上常见的几款多线机械旋转式激光探测测距仪的对比。
接下来进入到开箱环节,我们先来看看包含哪些配件。
主要有:浩界(Horizon)x1、电源转接插座2.0x1、Horizon快速入门指南x1、电源线x2、同步信号线x2、其他螺丝等小配件若干。



以太网线接口:连接至以太网线。使用标准 RJ45 以太网接口。
同步信号线接口:连接至同步信号线。

准备测试
我采用的是乞丐版数据采集平台,主要有:40块钱买的小车、Horizon、Nvidai TX1、电源模块、电池、显示屏等。





Livox Horizon雷达点云数据
livox_horizon_loam是览沃官网开源的一款软件包,主要应用于低速(~5km/h)感知场景下的应用,通过点云的帧间匹配实现激光雷达的位姿估计,实现了激光里程计(Lidar Odometry)和建图(Mapping)。livox_horizon_loam是基于LOAM(Lidar Odometry and Mapping in Real-time),与现在主流的激光雷达开源算法LeGO-LOAM、LIO-SAM等相比,没有回环检测和后端优化。
livox_horizon_loam算法的核心主要在于两个部分:特征提取(Lidar Registration)和里程计解算(Odometry and Mapping)。核心思想与LOAM是完全一致的。
详见:
https://github.com/Livox-SDK/livox_horizon_loam.git
附上测试视频以供大家参考:
大疆览沃浩界(Livox Horizon)激光雷达测试
关于Livox Horizon LOAM的测试说明:
测试平台的移动速度是成年人的正常行走速度。TX2主要用来记录雷达的数据,建图是在笔记本电脑上完成的(随着地图的增长,TX2的内存吃不消)。由于没有例如RTK GPS等比较准确的真值轨迹做对比,没法对定位精度做一个定量分析(后期有机会我会公布相关测试结果)。虽然Livox Horizon内置了BMI088 IMU,不过我并没有用IMU数据,上面两个数据都是纯激光完成的。
总体来说,效果还是不错的,目前发现的主要问题是Z轴的漂移,当然之前也说过,LOAM是没有回环检测和后端优化的。(后期有机会我将和LeGO-LOAM做对比并公布相关结果。
由于时间有限,这次测评比较初级,后期有机会我将持续更新分享我做的一些工作,比如:
(1)对雷达、RTK GPS、IMU、磁罗盘和相机的融合。
(2)对比测试更现代化一些的激光雷达算法,如LeGO-LOAM等。
(3)建图部分使用Octomap、Voxblox等,以便于嵌入式设备运行的SLAM。
关于Livox雷达行业应用的思考:
(1)Livox还是有很多优点,如随着积分时间增大,视场角的覆盖率也会增大,机械结构更可靠、价格更亲民等。不过,Livox的价格是最大的优势,所有商业化最后不得不面对价格这一道坎。64线、128线的激光好不好?好,这是肯定的。但动辄几十万的价格,对于很多应用场景都是接受不了的。
(2)当然Livox也有明显的缺点,例如单个雷达的FOV较小,市场的覆盖率取决于积分时间等。不过,我认为抛开应用场景来谈雷达是不合适的。比如,以我拙见,Livox在无人机测绘领域优势还是比较明显的。
本文为助教投稿。文章开通了打赏通道,所有打赏费用将转交原作者,此外,我们将额外支付其50-100元的稿费。 如需投稿,请添加课程助手微信:jiayue199506。