渲染管线漫谈(三)

顶点

顶点着色器中的顶点可以具有多个属性,具体的属性可能因应用程序的需求而有所不同。以下是一些常见的顶点属性:

顶点位置(Vertex Position):顶点位置是最基本的属性,表示顶点在模型空间中的位置。它通常是一个三维向量(x、y、z坐标)。

法线(Normal):法线是描述顶点表面方向的属性,用于光照计算和阴影生成。法线通常是一个三维向量,表示顶点表面的法线方向。

纹理坐标(Texture Coordinates):纹理坐标用于将纹理映射到顶点表面。它通常是一个二维向量(u、v坐标),用于在纹理图像上定位顶点的纹理采样位置。

颜色(Color):顶点颜色属性用于指定顶点的颜色。它可以是一个RGB颜色值或RGBA颜色值,用于在渲染过程中给顶点着色。

切线(Tangent)和副法线(Bitangent):切线和副法线是用于在渲染过程中进行法线映射和切线空间计算的属性。它们通常是三维向量。

骨骼权重(Bone Weights)和骨骼索引(Bone Indices):如果使用骨骼动画,顶点可以具有骨骼权重和骨骼索引属性,用于指定顶点受哪些骨骼的影响以及权重分配。

额外纹理坐标(Extra Texture Coordinates):如果需要在顶点着色器中进行更多的纹理操作,可以定义额外的纹理坐标属性。

切线空间属性(Tangent Space Attributes):除了切线和副法线之外,还可以定义其他切线空间相关的属性,如切线空间的切线、副法线和法线的切线空间变换矩阵等。

自定义顶点颜色(Custom Vertex Colors):除了基本的顶点颜色属性,可以定义其他自定义的颜色属性,如顶点的透明度、发光强度等。

自定义顶点属性(Custom Vertex Attributes):根据具体的需求,可以定义其他自定义的顶点属性,如顶点的质量、速度、弹性等。

这些自定义的顶点属性可以通过在顶点着色器中定义输入和输出变量来进行处理和传递。在顶点着色器中,可以对这些属性进行计算、变换和插值等操作,以实现各种复杂的渲染效果和动画效果。

总而言之,顶点着色器中的顶点属性可以根据应用需求进行灵活定义和使用,以满足不同的渲染需求和效果。

顶点的切线(Tangent)和副法线(Bitangent)通常是在顶点着色器中通过对法线和纹理坐标进行计算得到的。这些切线和副法线在进行法线映射、切线空间计算和光照计算等方面非常有用

以下是一种常见的计算方法:

首先,通过顶点着色器获取顶点的法线(Normal)和纹理坐标(Texture Coordinates)。

在顶点着色器中,根据纹理坐标的变化率(纹理坐标的梯度)计算出切线(Tangent)和副法线(Bitangent)的初始值。

为了确保切线和副法线与法线垂直,可以对它们进行正交化处理。这可以通过将切线和副法线与法线进行叉乘得到。

为了保持一致的切线空间,需要根据纹理坐标的方向(纹理坐标的切向量)来确定切线和副法线的方向。这可以通过计算纹理坐标的切向量与切线和副法线的叉乘来得到。

最后,将计算得到的切线和副法线传递给后续的渲染阶段,如几何着色器或片段着色器,以进行法线映射、切线空间计算和光照计算等操作。

需要注意的是,切线和副法线的计算通常在模型加载或预处理阶段进行,以避免在每个顶点着色器调用中进行重复计算。这样可以提高渲染性能并减少计算开销。

总结起来,切线和副法线的计算是通过对顶点的法线和纹理坐标进行计算得到的,以实现法线映射、切线空间计算和光照计算等效果。

顶点的纹理坐标是通过纹理映射(Texture Mapping)来分配的。纹理映射是将纹理图像上的像素映射到模型表面的过程,以实现更加真实和详细的渲染效果。

在分配纹理坐标时,通常有以下几种常见的方法:

手动分配:在建模软件中,可以手动为每个顶点分配纹理坐标。这通常涉及在模型的UV空间中绘制纹理坐标,然后将其映射到模型的表面。手动分配纹理坐标可以提供更精确的控制,但对于复杂的模型可能会比较耗时。

自动分配:有些建模软件可以自动为模型的顶点分配纹理坐标。这些软件使用算法来根据模型的几何形状和拓扑结构自动生成纹理坐标。自动分配可以节省时间,但可能会导致一些失真或不完美的映射。

投影分配:投影纹理映射是一种常见的纹理坐标分配方法,它将纹理图像投影到模型表面上。常见的投影方法包括平面投影、球形投影、柱面投影等。这种方法可以在不需要手动分配纹理坐标的情况下快速生成纹理映射,但可能会导致一些形变或失真。

UV展开:UV展开是一种将模型的表面展开为二维平面的过程,以便更好地分配纹理坐标。这通常涉及将模型的表面切割成多个可展开的部分,并将其展开到UV空间中。这样可以更精确地控制纹理坐标的分配,并避免失真或形变。

纹理坐标的分配方法取决于应用程序的需求和建模软件的功能。无论使用哪种方法,目标都是为每个顶点分配适当的纹理坐标,以便在渲染过程中正确地将纹理映射到模型表面,实现所需的视觉效果。

Vertex Shader

顶点着色器(Vertex Shader)是图形管线中的第一个可编程阶段,它负责处理每个顶点的数据。
将顶点从观察空间转换到裁顶点着色器(Vertex Shader)是图形管线中的第一个可编程阶段,它负责处理每个顶点的数据。在顶点着色器中,顶点变换是一个核心任务,它通常包括以下几个步骤:
模型变换(Model Transformation):

将顶点从模型空间(或局部空间)转换到世界空间。这涉及到将模型的位置、旋转和缩放应用到顶点上,以便将其放置在3D世界中的正确位置。
视图变换(View Transformation):

将顶点从世界空间转换到观察空间(或相机空间)。这个变换是基于相机的位置和方向,它将场景中的所有物体相对于观察者的视点进行变换。
投影变换(Projection Transformation):

将顶点从观察空间转换到裁剪空间。这个变换涉及到将3D场景投影到2D屏幕上,通常使用透视投影(Perspective Projection)或正交投影(Orthographic Projection)。
裁剪和齐次除法(Clipping and Homogeneous Division):

在顶点着色器的最后阶段,顶点坐标会被转换为齐次坐标形式,并进行裁剪空间的裁剪测试。之后,通过齐次除法将顶点坐标从裁剪空间转换到归一化设备坐标(Normalized Device Coordinates, NDC)。在这个过程中,顶点的x、y、z坐标会被它们的w坐标除以,以便将它们映射到[-1, 1]的范围内,这是后续图形管线阶段所期望的坐标范围。

视口变换(Viewport Transformation):
虽然视口变换通常在顶点着色器之后的阶段进行,但它也是顶点处理的一部分。在这个阶段,归一化设备坐标会被转换为实际屏幕空间坐标,这涉及到将NDC坐标映射到窗口或视口的大小和位置。
除了这些基本的顶点变换步骤,顶点着色器还可以执行其他任务,例如:

法线变换:

如果顶点着色器处理光照,它还需要将法线从模型空间转换到世界空间或观察空间,以便正确计算光照。
切线和副法线变换:

对于需要进行法线贴图的材质,顶点着色器还需要处理切线和副法线的变换。
纹理坐标处理:

顶点着色器可以修改或生成纹理坐标,用于后续的纹理映射。
自定义属性变换:

开发者可以在顶点着色器中处理自定义顶点属性,例如颜色、权重、粒子速度等,这些属性可以用于实现各种图形效果。
顶点着色器的灵活性和可编程性使得它可以用于实现各种复杂的顶点处理和变换任务,从而为3D图形渲染提供了强大的基础。

模型变换

在顶点着色器中实现模型变换通常涉及以下步骤和细节:

定义变换矩阵:

在CPU端(通常是应用程序的一部分),你需要定义模型变换矩阵。这个矩阵通常是由模型的位置(平移)、旋转和缩放参数构成的4x4矩阵。
传递变换矩阵到GPU:

通过图形API(如OpenGL或DirectX)将模型变换矩阵传递到GPU。这通常是通过统一变量(Uniforms)或常量缓冲区(Constant Buffers)来实现的。
在顶点着色器中应用变换:

在顶点着色器代码中,你会读取顶点的位置属性(通常是一个vec3或vec4),然后将其与模型变换矩阵相乘,以将顶点从模型空间变换到世界空间。
以下是一个简化的顶点着色器代码示例,展示了如何在GLSL(OpenGL着色语言)中实现模型变换:

glsl
复制
#version 330 core

layout(location = 0) in vec3 aPos; // 顶点位置属性

uniform mat4 model; // 模型变换矩阵统一变量

void main()
{
    // 将顶点位置从模型空间变换到世界空间
    vec4 worldPosition = model * vec4(aPos, 1.0);
    
    // 其他变换(视图、投影等)将在后续步骤中应用
    // ...
    
    gl_Position = worldPosition; // 设置最终顶点位置
}

在这个示例中,aPos是顶点的位置属性,model是传递到顶点着色器的模型变换矩阵。通过将aPos与model矩阵相乘,顶点位置被变换到世界空间。

模型变换矩阵的构建通常遵循以下顺序:

缩放:使用缩放矩阵对模型进行缩放。
旋转:使用旋转矩阵对模型进行旋转。
平移:使用平移矩阵将模型移动到世界空间中的指定位置。
这些矩阵相乘的顺序很重要,因为矩阵乘法不是交换的。通常,这些变换是先缩放,然后旋转,最后平移。

在实际应用中,模型变换可能更加复杂,包括处理多个子模型、骨骼动画、实例化渲染等。但基本的原理和步骤是相同的:定义变换矩阵,将其传递到GPU,并在顶点着色器中应用这些变换。

View Transformation

视图变换(View Transformation)是将顶点从世界空间转换到观察空间(也称为相机空间或视图空间)的过程。这个变换是基于虚拟相机(观察者)的位置和方向。以下是视图变换的具体流程和细节:

确定相机参数:

在CPU端,首先确定相机的位置、观察方向、上方向和右方向。这些参数通常由相机的位置向量、目标点(或观察方向向量)和上方向向量定义。
构建视图矩阵:

使用相机参数构建视图矩阵。视图矩阵是一个4x4矩阵,它描述了世界空间到观察空间的变换。在构建视图矩阵时,通常需要计算相机的右方向向量、真实的上方向向量和观察方向向量,然后使用这些向量构建一个旋转矩阵,再将相机位置的相反数应用于平移矩阵。
传递视图矩阵到GPU:

通过图形API将视图矩阵传递到GPU,通常是作为一个统一变量(Uniform)或在常量缓冲区(Constant Buffer)中。
在顶点着色器中应用视图变换:

在顶点着色器中,读取已经变换到世界空间的顶点位置,然后将其与视图矩阵相乘,以将顶点从世界空间变换到观察空间。
以下是一个简化的GLSL顶点着色器代码示例,展示了如何实现视图变换:

glsl
复制
#version 330 core

layout(location = 0) in vec3 aPos; // 顶点位置属性

uniform mat4 model; // 模型变换矩阵
uniform mat4 view; // 视图变换矩阵

void main()
{
// 将顶点位置从模型空间变换到世界空间
vec4 worldPosition = model * vec4(aPos, 1.0);

// 将顶点位置从世界空间变换到观察空间
vec4 viewPosition = view * worldPosition;

// 其他变换(如投影变换)将在后续步骤中应用
// ...

gl_Position = viewPosition; // 设置最终顶点位置

}
在这个示例中,view是传递到顶点着色器的视图变换矩阵。通过将已经变换到世界空间的顶点位置worldPosition与view矩阵相乘,顶点位置被变换到观察空间。

构建视图矩阵的常用方法是使用LookAt函数,它需要相机的位置、目标点和上方向向量。例如,在OpenGL中,可以使用glm::lookAt函数来创建视图矩阵:

glm::mat4 view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);
在这里,cameraPos是相机的位置,cameraFront是相机的前方向向量,cameraUp是相机的上方向向量。这个函数会返回一个4x4的视图矩阵,它可以直接传递到顶点着色器中。

视图变换是3D图形渲染中的一个关键步骤,它确保了场景中的物体是从相机的视角进行渲染的。通过正确地应用视图变换,可以创建出逼真的3D场景和动态的相机移动效果。

观察矩阵(View Matrix)

观察矩阵作用是将世界空间中的坐标转换到观察空间(相机空间)。观察空间是以相机(或观察者)的位置和方向为参考的坐标系统。在观察空间中,相机位于原点,朝向-z轴。

构建观察矩阵通常涉及以下步骤:

确定相机的坐标轴:

相机的前方向(通常指向-z轴)可以通过目标点减去相机位置得到,然后标准化。
相机的右方向可以通过上方向向量与前方向向量的叉乘得到,然后标准化。
相机的上方向可以通过前方向与右方向的叉乘得到,然后标准化。
构建旋转矩阵:

旋转矩阵是一个3x3矩阵,其列由相机的右方向、上方向和负的前方向向量组成。
构建平移矩阵:

平移矩阵是一个4x4矩阵,用于将世界坐标平移到相机坐标。它的平移部分是相机位置的相反数。
合并旋转和平移矩阵:

观察矩阵是旋转矩阵和平移矩阵的组合。在4x4矩阵中,旋转矩阵位于左上角的3x3部分,平移向量位于最后一列。
数学上数学上,观察矩阵(View Matrix)可以表示为:

复制
View Matrix = [ R T ]
[ 0 1 ]
其中 R 是3x3的旋转矩阵,T 是3x1的平移向量,0 是1x3的零向量,1 是标量1。

更具体地,如果相机的右方向向量为 R = (r_x, r_y, r_z),上方向向量为 U = (u_x, u_y, u_z),前方向向量为 F = (f_x, f_y, f_z),相机位置为 P = (p_x, p_y, p_z),则观察矩阵可以表示为:

复制
View Matrix = [ r_x r_y r_z -dot(R, P) ]
[ u_x u_y u_z -dot(U, P) ]
[ -f_x -f_y -f_z dot(F, P) ]
[ 0 0 0 1 ]
这里的 dot() 表示向量的点乘运算。注意,前方向向量在矩阵中是取反的,因为在观察空间中,相机通常朝向负z轴。

观察矩阵的具体作用是将世界坐标系中的点转换到观察坐标系中。如果有一个世界空间中的点 W = (w_x, w_y, w_z, 1),要将其转换到观察空间,我们可以使用以下公式:

复制
V = View Matrix * W
其中 V 是观察空间中的点。

在实际应用中,观察矩阵通常是通过图形API提供的函数来计算的,例如OpenGL中的 glm::lookAt 函数。这个函数接受相机的位置、目标点和上方向向量作为参数,返回一个4x4的观察矩阵。

观察矩阵的作用是为了创建一个以相机为中心的坐标系统,使得观察矩阵的作用是为了创建一个以相机为中心的坐标系统,使得渲染的场景看起来就像是从相机的视角观察的。在这个坐标系统中,相机位于原点,朝向负z轴,这样就可以正确地模拟人眼或相机的视角。

在3D图形渲染管线中,观察矩阵通常用于顶点着色器阶段,将顶点从世界空间变换到观察空间。这是渲染管线中的第一个变换步骤,之后通常还会有投影变换,将观察空间中的点变换到裁剪空间。

观察矩阵的计算通常涉及以下步骤:

计算相机的坐标轴:

前方向向量 F 可以通过目标点 T 减去相机位置 P 得到,然后标准化:F = normalize(T - P)。
右方向向量 R 可以通过上方向向量 Up 与前方向向量 F 的叉乘得到,然后标准化:R = normalize(cross(Up, F))。
上方向向量 U 可以通过前方向 F 与右方向 R 的叉乘得到,然后标准化:U = cross(F, R)。
构建旋转部分:

旋转矩阵的列由相机的右方向、上方向和负的前方向向量组成。
构建平移部分:

平移向量是相机位置的相反数在相机的坐标轴上的投影,即 -R * P、-U * P 和 F * P。
合并旋转和平移:

观察矩阵是旋转矩阵和平移矩阵的组合,通常在4x4矩阵中表示。
通过这个变换,所有的世界坐标都会被重新定位和旋转,使得相机成为新坐标系的中心。这样,当我们在屏幕上渲染这些顶点时,它们就会出现在正确的位置,就像我们通过相机的镜头看到的那样。

总结来说,观察矩阵的作用是将世界坐标系中的对象转换到以相机为中心的观察坐标系中,为接下来的投影变换和最终的屏幕映射做准备。这是3D图形渲染中实现正确视角的关键步骤。

Projection Transformation

投影变换(Projection Transformation)是3D图形渲染管线中的一个关键步骤,它负责将观察空间中的坐标转换到裁剪空间(Clip Space),然后进一步映射到屏幕空间。投影变换的目的是模拟相机镜头的透视效果,使得远处的物体看起来更小,近处的物体看起来更大,从而创建出深度感。

在3D图形中,主要有两种类型的投影变换:

透视投影(Perspective Projection):

透视投影模拟了人眼的视觉效果,使得物体随着距离的增加而逐渐变小。这种投影会产生一个称为“消失点”的效果,即远处的物体会向一个点收敛。
透视投影矩阵通常由视场角(Field of View, FOV)、宽高比(Aspect Ratio)、近裁剪平面(Near Clipping Plane)和远裁剪平面(Far Clipping Plane)来定义。
正交投影(Orthographic Projection):

正交投影不会模拟透视效果,即物体的大小不会随着距离的变化而变化。这种投影常用于工程图、建筑图等需要精确尺寸的场合。
正交投影矩阵通常由视图的宽度、高度、近裁剪平面和远裁剪平面来定义。
透视投影矩阵的数学表达式通常如下:

Perspective Matrix = [ 1/(aspect*tan(fov/2))      0                     0                           0                     ]
                     [ 0                         1/tan(fov/2)           0                           0                     ]
                     [ 0                         0                     -(far+near)/(far-near)       -2*far*near/(far-near) ]
                     [ 0                         0                     -1                           0                     ]
其中 aspect 是宽高比,fov 是视场角,near 和 far 分别是近裁剪平面和远裁剪平面的距离。

正交投影矩阵的数学表达式通常如下:


Orthographic Matrix = [ 2/width   0          0               0            ]
                      [ 0         2/height   0               0            ]
                      [ 0         0          -2/(far-near)   -(far+near)/(far-near) ]
                      [ 0         0          0               1            ]
其中 width 和 height 分别是视图的宽度和高度,near 和 far 同样表示近裁剪平面和远裁剪平面的距离。

投影变换后,顶点坐标会被转换到裁剪空间,然后通过裁剪操作和视口变换(Viewport Transformation)最终映射到屏幕坐标系,完成整个渲染过程。
光栅化过程还会涉及到像素着色、纹理映射、深度测试等一系列操作,以生成最终的图像。

总的来说,投影变换后的整个流程是这样的:

裁剪(Clipping):

在裁剪阶段,位于视锥体外的顶点和图元(如三角形)会被剔除,这样可以提高渲染效率,因为只有视锥体内的内容才会被用户看到。
透视除法(Perspective Division):

透视除法将裁剪空间中的齐次坐标转换为标准化设备坐标(NDC)。这一步骤是为了将3D坐标转换为2D屏幕坐标做准备。
视口变换(Viewport Transformation):

视口变换将NDC空间中的点映射到屏幕坐标系,这涉及到缩放和偏移操作,以适应实际的渲染窗口。
光栅化(Rasterization):

光栅化是将几何形状(通常是三角形)转换为屏幕上的像素的过程。在这个过程中,每个像素的颜色和深度值会被计算出来。
像素着色(Pixel Shading):

在像素着色阶段,每个像素的最终颜色会被确定。这可能涉及到执行像素着色器(Pixel Shader),它可以进行纹理映射、光照计算、阴影生成等操作。
深度测试(Depth Testing):

深度测试是用来确定哪些像素应该被绘制到屏幕上的过程。如果一个像素比之前绘制的像素更靠近观察者,那么它会被绘制,否则会被丢弃。
混合(Blending):

如果场景中有透明或半透明的物体,混合阶段会计混合阶段会计算这些物体与背后物体的颜色混合。这个过程涉及到根据透明度(alpha值)来混合颜色,以实现透明效果。
帧缓冲(Frame Buffering):
最终,所有经过处理的像素会被写入帧缓冲区(Frame Buffer),这是一个存储屏幕上每个像素颜色的内存区域。一旦所有像素都被处理完毕,帧缓冲区的内容就会被发送到显示设备,呈现给用户看到的最终图像。
这个流程是3D图形渲染的核心,它涉及到从几何数据的处理到像素级渲染的一系列复杂步骤。每一步都是为了更好地模拟现实世界的视觉效果,同时也要考虑到计算效率和资源限制。

现代图形API(如OpenGL、DirectX)和图形硬件(GPU)都是围绕这个流程设计的,它们提供了高度优化的实现,能够处理大量的几何数据和复杂的着色效果,以实现高质量的实时渲染。

在实际的3D应用程序开发中,开发者会使用这些图形API来创建和管理3D场景中的对象,定义材质和光照,设置相机视角,以及控制渲染流程。通过这些工具和技术,可以创建出从简单的3D模型到复杂的虚拟现实环境等各种视觉效果。

裁剪(Clipping)

在渲染管线中,裁剪(Clipping)是一个重要的步骤,它的目的是提高渲染效率,确保只有视锥体(View Frustum)内的物体才会被渲染。这样可以避免对视野之外的物体进行不必要的渲染计算,从而节省资源和提高性能。

裁剪的目的:
提高效率:移除视野之外的物体,减少渲染负担。
避免失真:防止视野之外的物体在透视除法后导致的坐标失真。
保证正确性:确保只有视野内的物体被渲染,避免渲染错误。
裁剪的步骤:
视锥体裁剪:将物体与视锥体进行比较,移除完全在视锥体外的物体。
平面裁剪:对于部分在视锥体内的物体,需要进一步与视锥体的六个平面(左、右、上、下、近、远)进行裁剪,保留在视锥体内的部分。
齐次坐标裁剪:在齐次坐标系中,使用w分量作为参考进行裁剪,确保只有w分量大于0的顶点被保留。
裁剪的算法:
Sutherland-Hodgman算法:

这是一种多边形裁剪算法,用于裁剪多边形与裁剪窗口的交集。它通过一系列的步骤,逐个裁剪窗口的边界,最终得到裁剪后的多边形。
Liang-Barsky算法:

这是一种线段裁剪算法,它使用参数化的线段方程和边界值来确定线段与裁剪窗口的交点,从而实现高效的线段裁剪。
Cohen-Sutherland算法:

这是另一种线段裁剪算法,它使用一种编码技术来快速确定线段是否完全在裁剪窗口内、外或部分相交。对于部分相交的线段,算法会计算交点并裁剪线段。
齐次坐标裁剪:

在齐次坐标系中,可以使用简单的比较操作来裁剪顶点。如果顶点的齐次坐标w分量小于或等于0,则该顶点位于视锥体之外,应该被裁剪掉。
在现代图形API中,如OpenGL或DirectX,裁剪通常是由图形硬件自动完成的,开发者不需要直接实现这些算法。但是,了解这些算法的原理对于理解渲染管线的工作方式仍然是非常有用的。

齐次坐标W

在计算机图形学中,齐次坐标是用来方便地表示点、向量和更复杂的几何变换的一种方式。一个齐次坐标通常由四个分量表示:(x, y, z, w)。在透视投影中,w分量扮演着非常重要的角色。

透视投影是一种模拟人眼视觉效果的投影方式,它能够创建出远处的物体看起来比近处的物体小的效果。在透视投影中,w分量用于实现这种深度感。

在透视变换中,w分量通常是通过以下方式计算的:

模型变换:首先,物体的顶点坐标会通过模型变换矩阵(Model matrix)转换到世界坐标系中。

视图变换:然后,世界坐标系中的顶点会通过视图变换矩阵(View matrix)转换到观察者(摄像机)坐标系中。

透视投影变换:最后,观察者坐标系中的顶点会通过透视投影矩阵(Projection matrix)转换到裁剪空间(Clip space)。在这个步骤中,w分量会被设置为顶点的负z坐标(即-w = z),这是因为在透视投影中,深度(z值)与距离成反比。

透视投影矩阵通常会有这样的形式:

复制
[ a 0 0 0 ]
[ 0 b 0 0 ]
[ 0 0 c d ]
[ 0 0 -1 0 ]
其中,a、b、c、d是根据视场角(Field of View)、纵横比(Aspect Ratio)、近裁剪面(Near Clipping Plane)和远裁剪面(Far Clipping Plane)计算出的值。

当一个顶点 (x, y, z, 1) 通过这个矩阵变换后,它的新坐标会变成 (x’, y’, z’, w’),其中 w’ = -z。这个新的w’分量是原始z坐标的负值,它将用于后续的透视除法(Perspective Division)。

透视除法:在顶点着色器(Vertex Shader)执行完毕后,每个顶点的坐标会被它们自己的w分量除以进行透视除法,将坐标从裁剪空间转换到归一化设备坐标(Normalized Device Coordinates, NDC)。这个步骤是通过下面的公式完成的:
复制
(x_ndc, y_ndc, z_ndc) = (x’/w’, y’/w’, z’/w’)
透视除法之后,w分量就用于将顶点坐标缩放,以模拟远处物体相对于近处物体的大小减小的效果。这就是为什么在透视投影中,随着物体离观察者越远(z值增大),它们在屏幕上的投影就越小。

总结来说,w分量在透视投影中的计算是通过透视投影矩阵来实现的,它将顶点的z坐标转换为w分量,然后通过透视除法来模拟深度感。这个过程是3D图形管线中非常关键的一步,它使得3D场景能够以逼真的方式显示在二维屏幕上。

Viewport Transformation

在计算机图形学中,渲染管线(Rendering Pipeline)是一系列将3D场景转换为2D图像的步骤。视口变换(Viewport Transformation)是这个管线中的一个步骤,它负责将归一化设备坐标(Normalized Device Coordinates, NDC)转换为实际屏幕上的像素坐标。这个过程通常发生在顶点处理之后,光栅化之前。

归一化设备坐标(NDC)
在视口变换之前,顶点的坐标会经过透视除法,转换为NDC。NDC是一个立方体空间,其中所有可见的顶点坐标都被限制在-1到1的范围内,无论是x、y还是z轴。这个空间确保了所有的顶点都可以被映射到屏幕上。

视口变换的步骤
视口变换的主要任务是将NDC中的坐标映射到窗口或视口的像素坐标。这个过程包括以下几个步骤:

缩放:首先,将NDC坐标缩放到视口的大小。在NDC中,x和y的范围是[-1, 1],而视口的宽度和高度是以像素为单位的。因此,需要将NDC坐标乘以视口的宽度和高度的一半,以将其缩放到视口的尺寸。

平移:接着,将缩放后的坐标平移到视口的实际位置。在NDC中,原点是(0, 0),但视口的原点通常是在屏幕的左下角。因此,需要将缩放后的坐标加上视口的左下角坐标。

深度范围调整:最后,z坐标也需要被调整到实际的深度缓冲区范围。通常,这个范围是[0, 1],其中0对应近裁剪面,1对应远裁剪面。

具体实现
视口变换可以用以下公式表示:

复制
x_screen = (x_ndc + 1) * viewport_width / 2 + viewport_x
y_screen = (y_ndc + 1) * viewport_height / 2 + viewport_y
z_screen = z_ndc * (depth_max - depth_min) + depth_min
其中:(x_ndc, y_ndc, z_ndc) 是顶点的归一化设备坐标。
viewport_width 和 viewport_height 是视口的宽度和高度(通常以像素为单位)。
viewport_x 和 viewport_y 是视口在屏幕上的左下角坐标。
depth_min 和 depth_max 是深度缓冲区的最小值和最大值,通常分别为0和1。
这个变换过程将NDC中的点映射到视口空间,即屏幕空间。在屏幕空间中,每个点的 (x_screen, y_screen) 坐标对应屏幕上的像素位置,而 z_screen 坐标用于深度测试,以确定哪个表面在视觉上更靠前。

在大多数图形API(如OpenGL或DirectX)中,视口变换是自动完成的,但是你需要指定视口的位置和大小。例如,在OpenGL中,你可以使用 glViewport 函数来设置视口的参数:

c
复制
glViewport(GLint x, GLint y, GLsizei width, GLsizei height);
这里的 (x, y) 指定了视口的左下角在窗口中的位置,width 和 height 指定了视口的宽度和高度。

在视口变换之后,顶点的坐标就已经是屏幕空间坐标了。接下来,这些坐标会被送入光栅化阶段,光栅化器会根据这些坐标生成片元(fragments),这些片元随后会经过片元着色器的处理,最终形成最后的像素颜色值,显示在屏幕上。

视口变换是渲染管线中的一个关键步骤,它确保了3D场景中的物体能够正确地映射到2D屏幕上,同时保持了透视效果。这个过程是自动完成的,但是需要开发者提供正确的视口参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值