摘要
复数的出现源于解决平方根为负数的问题,传统实数无法满足这一需求。数学家通过引入虚数单位 (i)(满足 (i^2 = -1)),创造了复数,形式为 (a + bi)。复数不仅让所有多项式方程都有解,还扩展了数学的应用范围,尤其在描述旋转和振动方面表现出色。与实数不同,复数存在于二维平面,能够同时表示方向和大小。在游戏开发中,复数乘法被广泛应用于二维旋转、波动模拟和弹幕轨迹等场景,其简洁性和高效性使其成为比三角函数更优雅的工具。通过代码示例,展示了复数在Python、Unity和Godot中的实际应用,进一步证明了复数在数学和工程中的重要性。
一、复数的出现:现实中的“拦路虎”
1. 故事开头:平方根的难题
想象你是古代的数学家,遇到这样一个问题:
“有没有一个数,平方以后等于-1?”
你试着用你熟悉的数来解:
- 2的平方是4
- -2的平方也是4
- 0的平方是0
你发现:任何正数或负数的平方都不可能是负数!