
本文由CSDN点云侠原创,原文链接,首发于:2020年5月18日。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的抄袭狗。博客长期更新,本文最新更新时间为:2024年7月27日。
一、FitnessScore
1、概念介绍
由于错误的配准效果点云空间位置相差较大,传统的均方根误差RMSE作为配准精度评定,限制最近点距离阈值会导致配准错误的点被剔除,从而得到较小的RMSE,错误点被剔除得到的RMSE值较小,但是配准效果并不理想。采用配准后点云对应的最近点距离的平方和作为配准效果的评定可以避免这种结果,配 准 得分指标是通过计算配准后对应点对之间的欧氏距离,再进行求和后除以配准点总数 得到的平均距离差值,即为得 分FitnessScore。
本文介绍了FitnessScore作为点云配准效果评估的指标,其优于传统的RMSE,因为它考虑了所有点对的欧式距离。在PCL中,getFitnessScore()函数用于计算配准后的MSE,而文中还讨论了如何在ICP配准前计算初始位置的MSE。此外,文章引用了相关文献并提供了源码分析。
订阅专栏 解锁全文
62万+





