《原始论文:Neural Message Passing for Quantum Chemistry》
一、概述
从设计理念上看,空域卷积与深度学习中的卷积的应用方式类似,其核心在于聚合邻居结点的信息。
比如说,一种最简单的无参卷积方式可以是:将所有直连邻居结点的隐藏状态加和,来更新当前结点的隐藏状态。
这里非参式的卷积只是为了举一个简单易懂的例子,实际上图卷积在建模时需要的都是带参数、可学习的卷积核。
消息传递网络(MPNN)《Neural Message Passing for Quantum Chemistry》 是由Google科学家提出的一