GNN-图卷积模型-2017:MPNN(消息传递神经网络)【消息传递(前向传播):聚合函数(消息传递)+更新函数(状态更新)】【图卷积模型统一框架】

本文介绍了Google科学家提出的MPNN(消息传递神经网络)模型,这是一种图卷积的统一框架。MPNN将空域卷积分解为消息传递和状态更新两部分,用于化学分子的有监督学习,适用于化学、药物发现和材料科学。论文证明了MPNN在化学分子性能预测上的有效性,并提出了虚拟边、主节点、多塔等策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《原始论文:Neural Message Passing for Quantum Chemistry》

在这里插入图片描述

一、概述

从设计理念上看,空域卷积与深度学习中的卷积的应用方式类似,其核心在于聚合邻居结点的信息

比如说,一种最简单的无参卷积方式可以是:将所有直连邻居结点的隐藏状态加和,来更新当前结点的隐藏状态。

在这里插入图片描述

这里非参式的卷积只是为了举一个简单易懂的例子,实际上图卷积在建模时需要的都是带参数、可学习的卷积核。

消息传递网络(MPNN)《Neural Message Passing for Quantum Chemistry》 是由Google科学家提出的一

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值