§ 2 一元多项式
在对多项式的讨论中,我们总是以一个预先给定的数域 P P P 作为基础. 设 x x x
是一个
符号 (或称文字), 我们有
定义 2 设 n n n 是一非负整数. 形式表达式
a n x n + a n − 1 x n − 1 + ⋯ + a 0 , a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, anxn+an−1xn−1+⋯+a0,
其中 a 0 , a 1 , ⋯ , a n a_{0}, a_{1}, \cdots, a_{n} a0,a1,⋯,an 全属于数域 P P P,称为系数在数域 P P P
中的一个一元多项式,或者简称为数域 P P P 上的一元多项式.
在多项式 (1) 中, a k x k a_{k} x^{k} akxk 称为 k k k 次项, a k a_{k} ak 称为 k k k
次项的系数. 以后我们用 f ( x ) , g ( x ) f(x), g(x) f(x),g(x), ⋯ \cdots ⋯ 或 f , g , ⋯ f, g, \cdots f,g,⋯
来代表多项式.
注意,我们这儿定义的多项式是符号或文字的形式表达式.
当这符号是未知数时,它是中学所学代数中的多项式.看应用需要,
这个符号还可代表其他待定事物.
为了能统一研究未知数和其他待定事物的多项式,我们才抽象地定义上述形式表达式.
并且还要对它们引人运算来反映各个待定事物所满足的运算规律,
统一研究以得到它们普遍的公共的性质.
定义 3 如果在多项式 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x) 中, 除去系数为零的项外,
同次项的系数全相等, 那么 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x) 就称为相等, 记为
f ˙ ( x ) = g ( x ) . \dot{f}(x)=g(x) \text {. } f˙(x)=g(x).
系数全为零的多项式称为零多项式, 记为 0.
在 (1) 中, 如果 a n ≠ 0 a_{n} \neq 0 an=0, 那么 a n x n a_{n} x^{n} anxn 称为多项式 (1)
的首项, a n a_{n} an 称为首项系数, n n n称为多项式 (1) 的次数.
零多项式是唯一不定义次数的多项式. 多项式 f ( x ) f(x) f(x) 的次数记为
t i a l ( f ( x ) ) (1). tial(f(x)) \text { (1). } tial(f(x)) (1).
在中学所讲的代数中,两个多项式可以相加、相减、相乘.例如,
( 2 x 2 − 1 ) + ( x 3 − 2 x 2 + x + 2 ) = x 3 + x + 1 , ( 2 x 2 − 1 ) ( x 2 − x + 1 ) = 2 x 4 − 2 x 3 + 2 x 2 − x 2 + x − 1 = 2 x 4 − 2 x 3 + x 2 + x − 1. \begin{aligned} \left(2 x^{2}-1\right)+\left(x^{3}-2 x^{2}+x+2\right) & =x^{3}+x+1, \\ \left(2 x^{2}-1\right)\left(x^{2}-x+1\right) & =2 x^{4}-2 x^{3}+2 x^{2}-x^{2}+x-1 \\ & =2 x^{4}-2 x^{3}+x^{2}+x-1 . \end{aligned} (2x2−1)+(x3−2x2+x+2)(2x2−1)(x2−x+1)=x3+x+1,=2x4−2x3+2x2−x2+x−1=2x4−2x3+x2+x−1.
我们对形式表达式 (1), 可类似地引人这些运算, 为便于计算和讨论,
我们常常用和号来表达多项式.
设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 , g ( x ) = b m x m + b m − 1 x
高等代数(一)-多项式02:一元多项式
于 2024-02-02 21:20:35 首次发布