gtsam收敛阈值设置

在GTSAM中获取收敛阈值,可以通过设置优化器的参数来实现。在GTSAM中,常用的优化器之一是LevenbergMarquardtOptimizer,它有一个参数lambdaInitial,用于设置初始的惩罚因子,这个参数与收敛阈值有关。此外,还可以通过设置ISAM2Params参数来控制优化过程中的阈值。

在搜索结果中,有一个示例代码展示了如何设置ISAM2的参数,其中包含了relinearizeThreshold,这个参数可以作为收敛阈值的一个参考。relinearizeThreshold是决定何时重新线性化变量的阈值,当误差的某个维度超过这个阈值时,对应的变量会被重新线性化。在实际应用中,可以根据具体问题调整这个参数以控制优化的收敛行为。

具体来说,可以通过以下方式设置ISAM2的参数:

cpp

ISAM2Params parameters;
parameters.relinearizeThreshold = 0.01; // 设置重新线性化的阈值
parameters.relinearizeSkip = 1; // 设置重新线性化跳过的迭代次数
isam = new ISAM2(parameters); // 初始化ISAM2对象

在这个例子中,relinearizeThreshold被设置为0.01,这意味着当优化过程中变量的误差超过0.01时,该变量会被重新线性化。这个值可以根据实际问题和优化需求进行调整,以达到期望的收敛效果。

  1. 设置优化参数

    • 对于LevenbergMarquardtOptimizer,可以设置lambdaInitial(初始惩罚因子)和lambdaFactor(每次迭代后惩罚因子的增长倍数)。
    • 对于GaussNewtonOptimizer,可以设置relativeErrorTol(相对误差容忍度)、maxIterations(最大迭代次数)和linearSolverType(线性求解器类型)
  2. 监控优化过程

    • 通过设置verbosity参数,可以监控优化过程中的详细信息,帮助调试和调优。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值