1.算法原理
2.UAV路径规划数学模型
无人机(unmanned aerial vehicle,UAV)路径规划是无人机导航系统中的一项关键技术,它使无人机能够自动确定从起点到终点的最优或可行飞行路径。
UAV路径规划可以从路径长度、路径平滑度、飞行安全度方面构建路径规划目标函数。
路径长度
路径长度是判断路径质量的重要依据,路径长度越短,越有利于无人机节省能耗:
F
l
=
∑
i
=
1
n
(
x
i
+
1
−
x
i
)
2
+
(
y
i
+
1
−
y
i
)
2
+
(
z
i
+
1
−
z
i
)
2
(1)
F_{l}=\sum_{i=1}^{n}\sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}+\left(z_{i+1}-z_{i}\right)^{2}}\tag{1}
Fl=i=1∑n(xi+1−xi)2+(yi+1−yi)2+(zi+1−zi)2(1)
其中,n 为航迹点数目,(xi,yi,zi) 表示第 i 个航迹点的位置。
路径平滑度
规划路径应尽量减少大角度偏航和高度的突变,需要保持路径平滑。由于山区陡峭、落差大的地形特点,无人机在山区飞行需要飞行路径满足自身的最大爬升角和爬升率的要求。li 表示 2 个航迹点之间的距离,偏转角
φ
i
\varphi_i
φi和俯仰角
ϕ
i
\phi_i
ϕi:
φ
i
=
arctan
(
∥
l
i
l
i
+
1
∥
l
i
l
i
+
1
)
ϕ
i
=
arctan
(
z
i
+
1
−
z
i
(
x
i
+
1
−
x
i
)
2
+
(
y
i
+
1
−
y
i
)
2
)
F
e
=
∑
i
=
1
n
−
2
φ
i
+
∑
i
=
1
n
−
1
(
ϕ
i
−
ϕ
i
−
1
)
(2)
\begin{gathered} \varphi_i=\arctan\left(\frac{\left\|l_il_{i+1}\right\|}{l_il_{i+1}}\right) \\ \phi_i=\arctan\left(\frac{z_{i+1}-z_i}{\sqrt{\left(x_{i+1}-x_i\right)^2+\left(y_{i+1}-y_i\right)^2}}\right) \\ F_e=\sum_{i=1}^{n-2}\varphi_i+\sum_{i=1}^{n-1}\left(\phi_i-\phi_{i-1}\right) \end{gathered}\tag{2}
φi=arctan(lili+1∥lili+1∥)ϕi=arctan
(xi+1−xi)2+(yi+1−yi)2zi+1−zi
Fe=i=1∑n−2φi+i=1∑n−1(ϕi−ϕi−1)(2)
飞行安全性
路径规划中的路径还必须要确保无人机的安全运行,因此引入飞行安全性能够引导无人机躲避环境中的障碍物。空域内存在中心坐标为Ok ,半径为 Rk 的障碍物 K, 无人机的飞行节点与障碍物的垂线距离 dk 应该大于安全距离阈值 S:
F
s
=
{
0
,
d
k
≥
S
S
−
d
k
,
R
k
<
d
k
<
S
∞
,
d
k
<
R
k
(3)
F_s=\begin{cases}0,d_k\geq S\\S-d_k,R_k<d_k<S \\\infty,d_k<R_k\end{cases}\tag{3}
Fs=⎩
⎨
⎧0,dk≥SS−dk,Rk<dk<S∞,dk<Rk(3)
上述各类成本函数进行加权综合,构成多目标路径规划问题的目标函数 F:
F
=
ω
1
F
1
+
ω
2
F
e
+
ω
3
F
s
(4)
F=\omega_1F_1+\omega_2F_e+\omega_3F_s\tag{4}
F=ω1F1+ω2Fe+ω3Fs(4)
3.结果展示
4.参考文献
[1]段跃飞.无人机路径规划算法研究[D].电子科技大学,2023.
[2]远翔宇,杨风暴,杨童瑶.基于自适应蜣螂算法的无人机三维路径规划方法[J].无线电工程,2024,54(04):928-936.