【最新技术:grokking】机器学习模型是记忆还是泛化?

本文探讨了机器学习模型在训练过程中是记忆还是泛化的问题,通过研究微型模型的训练动态,尤其是Grokking现象,即模型在长时间训练后突然实现泛化。作者通过实验展示了模型如何从记忆训练数据转变为概括看不见的输入,并通过简单的任务解释了模型如何学习和泛化。文章提出了一些开放性问题,如哪种模型约束最有效,为什么记忆比概括更容易,以及大型模型如何表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Do Machine Learning Models Memorize or Generalize? (pair.withgoogle.com)

机器学习模型是记忆还是泛化?

作者:Adam Pearce、  Asma Ghandeharioun、  Nada Hussein、  Nithum Thain、  Martin Wattenberg 和  Lucas Dixon
2023 年 <> 月

2021 年,研究人员在训练一系列用于玩具任务的微型模型时取得了惊人的发现。[1].他们发现了一组模型,这些模型在训练更长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值