【证明】【一题多解】—— 负梯度方向的证明

1. 一节泰勒展开

  • 负梯度方向即为(以矢量形式为例): dk=g(xk) d k = − g ( x k )

    f(xk+λdk)f(xk)+λgT(xk)dk f ( x k + λ d k ) ≈ f ( x k ) + λ g T ( x k ) d k

    • 由矢量相乘的 ab=aTb=abcosθ a ⋅ b = a T b = ‖ a ‖ ‖ b ‖ cos ⁡ θ ,可知 gT(xk)dkgT(xk)dk g T ( x k ) d k ≥ − g T ( x k ) d k dk d k g(xk) g ( x k ) 同向时,即两者呈180°,互为反方向,等号取得)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值