
MATLAB实现CNN-BiGRU-Attention卷积神经网络(CNN)结合双向门控循环单元(BiGRU)融合注意力机制多输入单输出回归预测的详细项目实例(含模型描述及示例代码)
摘要:本项目提出了一种基于CNN-BiGRU-Attention混合模型的创新回归预测方法,通过融合卷积神经网络、双向门控循环单元和注意力机制,实现多输入单输出的高精度预测。模型采用CNN提取局部特征,BiGRU处理时序依赖,注意力机制增强关键信息关注,有效解决了复杂数据建模、长时序依赖等挑战。项目具有自动化特征学习、强解释性和灵活调整等特点,适用于金融、气象、医疗等8大领域的预测任务。MATLAB实现方案包含完整的数据预处理、模型构建和训练流程,并提供了详细的代码示例和GUI设计,为复杂时序预测任务提供了
MATLAB实现基于SA-LSTM模拟退火算法(SA)优化长短期记忆网络(LSTM)进行时间序列预测的详细项目实例(含完整的程序,GUI设计和代码详解) 还请多多点一下关注 加油 谢谢
本项目基于MATLAB实现了一种结合模拟退火算法(SA)和长短期记忆网络(LSTM)的时间序列预测方法。主要内容包括: 项目背景:针对传统LSTM模型超参数调优困难的问题,引入模拟退火算法进行自动化优化,提升预测精度和泛化能力。 核心方法: 数据预处理:包含缺失值填补、异常值处理、归一化和滑动窗口构建 SA-LSTM联合优化:利用SA算法搜索LSTM最优超参数(隐藏单元数、学习率、训练轮数等) 模型评估:采用RMSE、MAE、MAPE等多指标综合评价 项目特点: 多层次超参数优化策略 深度学习与元启发式算法




