在基于UE引擎开发的复杂游戏中,DS的管理是一个重要的挑战,尤其是在处理大量数据和复杂业务逻辑时。为了有效地管理DS进程的启停,设计一个DS Agent(DSA)是一个合理的解决方案。以下是DSA的设计思路和实现方案。
DSA(DS Agent)设计思路
-
进程管理:
- DSA负责启动和停止DS进程,确保每局游戏都有独立的DS实例,避免数据重用带来的问题。
- 通过监控DS进程的状态,确保在游戏结束后及时回收资源。
-
触发机制:
- DSA可以通过接收分配请求来启动DS进程。
- 在游戏结束时,DSA会主动终止DS进程,确保所有资源被释放。
-
状态监控:
- DSA需要监控DS进程的健康状态,及时处理异常情况(如crash或卡死)。
- 可以实现重启机制,当DS进程异常退出时,DSA可以自动重启。
监控、回收异常DS
如果希望长期地、稳定地维护一堆不断启停且持续版本升级的DS进程,这样是远远不够的。仅DS打包就可能引起bug,导致DS拉起异常,更不用提DS逻辑bug了。一个异常的DS,可能死循环,可能悬停占着资源但不退出,可能突然crash。一台机器上一般只能启动几十到几百个DS进程,异常的DS很容易引起机器资源泄露,也就是说线上跑着跑着一台机器没了。
所以DSA需要有能力监控每个DS进程的健康状况,并主动回收异常的DS。
DSA的监控与回收机制
-
健康监控:
- DSA需要定期检查每个DS进程的健康状态,包括CPU和内存使用情况、响应时间等。
- 可以通过设置阈值来判断DS进程是否异常,例如CPU使用率超过某个百分比、内存使用量超过设定值、响应时间过长等。
-
异常检测:
- 通过监控进程的状态,DSA可以检测到以下几种异常情况:
- 死循环:进程长时间没有输出或响应。
- 悬停:进程占用资源但没有正常工作。
- 崩溃:进程意外退出或崩溃。
- 通过监控进程的状态,DSA可以检测到以下几种异常情况:
-
主动回收:
- 一旦检测到异常,DSA应立即采取措施回收该DS进程,释放占用的资源。
- 可以通过发送信号(如SIGTERM)来优雅地终止进程,或者在必要时使用SIGKILL强制终止。
-
日志记录与报警:
- 记录异常DS的相关信息,包括进程ID、异常类型、资源使用情况等,以便后续分析。
- 可以设置报警机制,当检测到异常时,及时通知运维人员。
-
重启机制:
- 在回收异常DS后,DSA可以选择自动重启该进程,以确保服务的连续性。
- 重启时可以考虑使用最新的DS版本,确保修复已知的bug。
DSA的实现方案
以下是一个简单的DSA监控与回收机制的伪代码示例:
import subprocess
import time
import os
import signal
import psutil # 用于进程监控
class DSAgent:
def __init__(self):
self.ds_processes = []
def start_ds(self):
ds_process = self.launch_ds_process()
self.ds_processes.append(ds_process)
self.log("DS process started with PID: {}".format(ds_process.pid))
def stop_ds(self, ds_process):
if ds_process.is_running():
ds_process.terminate()
self.log("DS process with PID: {} has been terminated.".format(ds_process.pid))
self.ds_processes.remove(ds_process)
def monitor_ds(self):
while True:
for ds_process in self.ds_processes:
if not ds_process.is_running() or self.is_process_abnormal(ds_process):
self.log("Detected abnormal DS process with PID: {}".format(ds_process.pid))
self.stop_ds(ds_process)
self.start_ds() # 重新启动DS进程
time.sleep(5) # 每5秒检查一次
def is_process_abnormal(self, ds_process):
# 检查进程的健康状况
try:
process = psutil.Process(ds_process.pid)
cpu_usage = process.cpu_percent(interval=1)
memory_info = process.memory_info()
# 设置阈值
if cpu_usage > 80: # CPU使用率超过80%
return True
if memory_info.rss > 200 * 1024 * 1024: # 内存使用超过200MB
return True
# 可以添加更多的健康检查逻辑
except (psutil.NoSuchProcess, psutil.AccessDenied):
return True # 进程不存在或无法访问,视为异常
return False
def launch_ds_process(self):
# 启动DS进程的具体实现
return subprocess.Popen(["path/to/ds_executable"])
def log(self, message):
# 记录日志的实现
print(message) # 可以替换为更复杂的日志系统
# 使用示例
ds_agent = DSAgent()
ds_agent.start_ds() # 启动DS进程
ds_agent.monitor_ds() # 开始监控DS进程
关键点总结
- 健康监控:定期检查DS进程的CPU、内存使用情况和响应时间。
- 异常检测:识别死循环、悬停和崩溃等异常情况。
- 主动回收:及时回收异常的DS进程,释放资源。
- 日志记录与报警:记录异常信息并设置报警机制。
- 重启机制:在回收异常DS后,自动重启进程以确保服务的连续性。
进一步的考虑
- 配置管理:可以将监控参数(如CPU和内存阈值)外部化,以便于调整。
- 多进程管理:如果有多个DS进程,DSA需要能够高效地管理和监控它们。
- 性能优化:监控机制的实现应尽量减少对系统性能的影响。
- 可视化监控:可以考虑将监控数据可视化,方便运维人员实时查看DS进程的状态。
通过这样的设计,DSA能够有效地监控和回收异常的DS进程,确保系统的稳定性和资源的有效利用。
加速拉起
拉起DS相对拉起普通的后台服务,非常耗时,从几秒到几十秒都有。如果希望用户不用秒级等待,又能实时分配DS,则需要应对处理。但是,加速拉起并不是所有场景下都需要的,有的业务由于前端切换场景本就耗时更长,所以后台拉起DS慢点也没什么影响。### 加速拉起的设计思路
-
预热机制:
- 在系统空闲时,提前启动一定数量的DS进程,保持它们处于可用状态。这样,当用户请求时,可以直接分配已有的DS进程,减少启动时间。
- 可以根据历史数据分析,预测高峰时段,提前预热更多的DS进程。
-
懒加载:
- 对于不常用的DS进程,可以采用懒加载的方式,即在用户请求时再启动DS,但在启动过程中提供一个快速反馈,告知用户正在加载。
- 可以使用占位符或加载动画来提升用户体验。
-
异步启动:
- 在接收到请求后,立即返回一个响应,告知用户请求已被接收,同时在后台异步启动DS进程。
- 通过WebSocket或长轮询等方式,实时更新DS的启动状态,用户可以在后台等待。
-
优化启动流程:
- 分析DS的启动流程,找出瓶颈并进行优化。例如,减少不必要的初始化步骤,使用更轻量级的配置文件等。
- 考虑使用容器化技术(如Docker)来加速DS的启动,容器的启动速度通常比传统进程快。
-
动态资源分配:
- 根据当前系统负载和用户请求动态调整DS的数量,确保在高并发情况下能够快速响应。
- 可以使用负载均衡器来分配请求,确保DS的负载均匀。
加速拉起的实现方案
以下是一个简单的加速拉起机制的伪代码示例:
import subprocess
import time
import threading
class DSAgent:
def __init__(self):
self.ds_processes = []
self.preheated_count = 5 # 预热的DS进程数量
def preheat_ds(self):
for _ in range(self.preheated_count):
self.start_ds()
def start_ds(self):
ds_process = self.launch_ds_process()
self.ds_processes.append(ds_process)
self.log("DS process started with PID: {}".format(ds_process.pid))
def launch_ds_process(self):
# 启动DS进程的具体实现
return subprocess.Popen(["path/to/ds_executable"])
def handle_request(self):
if self.ds_processes:
ds_process = self.ds_processes.pop(0) # 从已有的DS进程中分配
self.log("Using existing DS process with PID: {}".format(ds_process.pid))
return ds_process
else:
self.log("No available DS processes, starting a new one.")
return self.start_ds() # 启动新的DS进程
def log(self, message):
# 记录日志的实现
print(message) # 可以替换为更复杂的日志系统
# 使用示例
ds_agent = DSAgent()
ds_agent.preheat_ds() # 预热DS进程
# 模拟请求处理
def simulate_requests():
for _ in range(10):
ds_agent.handle_request()
time.sleep(1) # 模拟请求间隔
# 启动请求模拟
request_thread = threading.Thread(target=simulate_requests)
request_thread.start()
关键点总结
- 预热机制:提前启动一定数量的DS进程,减少用户等待时间。
- 懒加载与异步启动:在用户请求时启动DS,并提供快速反馈,提升用户体验。
- 优化启动流程:分析并优化DS的启动过程,减少启动时间。
- 动态资源分配:根据系统负载动态调整DS数量,确保高并发情况下的快速响应。
进一步的考虑
- 监控与分析:监控DS的启动时间和使用情况,分析数据以优化预热策略。
- 用户体验:在用户界面上提供友好的加载提示,减少用户的焦虑感。
- 配置管理:可以将预热数量和其他参数外部化,以便于根据实际情况进行调整。
- 容器化:考虑使用容器化技术(如Kubernetes)来管理DS进程,利用容器的快速启动特性。
通过这些设计和实现方案,DSA能够有效地加速DS的拉起过程,提升用户体验,确保在需要时能够快速响应用户请求。、
DS部署不停服升级
因为DS版本需要经常升级,希望每次升级不需要停服,也不用影响线上玩家。怎么办呢?
不停服升级的设计方案
1. 定义概念
- Build:DS包,包含了DS的代码和资源。
- Fleet:DS包、启动命令行参数和启动方式的组合,作为最小的分配单元。
- Alias:服务侧的别名,用于将Alias映射到Fleet,解耦DS的版本升级与服务的调用。
2. 升级流程
以下是进行不停服升级的具体步骤:
-
准备新版本Build:
- 在DSA(数据服务代理)上部署新版本的Build,确保新版本经过充分的测试。
-
创建新Fleet:
- 在DSA上创建新的Fleet,包含新版本的Build、启动命令行参数和启动方式(如是否启用DS拉起优化)。
-
更新Alias映射:
- 在DSC(数据服务控制器)上将Alias映射到新Fleet。此时,所有新的请求将被分配到新Fleet,而老Fleet将不再接收新的请求。
-
平滑过渡:
- 对于已经在运行的老版本DS,不强制回收,而是让其自然退出。玩家在游戏中使用老版本DS时,系统会继续提供服务,直到他们退出。
- 监控老版本DS的状态,确保其正常运行,直到所有玩家都退出。
-
观察集群状态:
- 在升级过程中,持续监控新Fleet的健康状况和性能指标,确保新版本DS正常工作。
- 如果发现问题,及时采取措施。
-
发布结果处理:
- 发布失败:如果新Fleet出现问题,立即回滚DSC上的Alias映射,切换回老Fleet和老Build,确保服务的连续性。
- 发布成功:如果新Fleet运行正常,可以选择下线老Fleet和Build,释放资源。
关键点总结
- 解耦升级与服务调用:通过Alias映射到Fleet的方式,确保服务调用与DS版本的解耦,降低升级风险。
- 平滑过渡:不强制回收老版本DS,允许玩家自然退出,减少对用户体验的影响。
- 监控与回滚机制:在升级过程中,实时监控新Fleet的状态,确保能够快速回滚到老版本。
进一步的考虑
- 版本兼容性:确保新版本DS与老版本DS之间的兼容性,避免因版本不兼容导致的错误。
- 灰度发布:可以考虑采用灰度发布策略,逐步将流量切换到新Fleet,进一步降低风险。
- 自动化工具:开发自动化工具来管理Build、Fleet和Alias的创建、更新和回滚,提升发布效率。
- 日志与监控:加强日志记录和监控,确保在升级过程中能够及时发现和解决问题。
示例流程
以下是一个简单的伪代码示例,展示如何实现上述流程:
class DSDeploymentManager:
def __init__(self):
self.current_fleet = None
self.new_fleet = None
self.alias = "current_ds"
def deploy_new_build(self, new_build):
# 步骤1: 部署新版本Build
self.new_fleet = self.create_fleet(new_build)
# 步骤2: 更新Alias映射
self.update_alias(self.new_fleet)
# 步骤3: 监控新Fleet
if self.monitor_fleet(self.new_fleet):
self.cleanup_old_fleet()
else:
self.rollback_alias()
def create_fleet(self, build):
# 创建新的Fleet
return Fleet(build)
def update_alias(self, fleet):
# 更新Alias映射到新Fleet
self.alias = fleet
def monitor_fleet(self, fleet):
# 监控新Fleet的健康状况
return fleet.is_healthy()
def cleanup_old_fleet(self):
# 下线老Fleet
if self.current_fleet:
self.current_fleet.shutdown()
def rollback_alias(self):
# 回滚Alias到老Fleet
self.alias = self.current_fleet
# 使用示例
deployment_manager = DSDeploymentManager()
deployment_manager.deploy_new_build("new_ds_build")
通过这样的设计和实现方案,DS可以实现不停服升级,确保在版本更新时不影响线上玩家的体验,提升系统的可用性和稳定性。
负载均衡
为了实现高效的负载均衡和资源分配,结合了Kubernetes的动态打分机制,并针对DS(启动时的高CPU消耗和实时负载监控的需求进行了优化。以下是对该设计思路的详细分析和实现方案。
负载均衡设计方案
1. 设计思路
- 动态打分机制:通过实时监控DSA(数据服务代理)的负载情况,动态调整其分配分数。故障节点的分数会下降,而负载过高的DSA将暂时不被分配请求。
- 实时上报:DSA实时向DSC(数据服务控制器)上报其负载和状态信息,以便DSC能够快速做出决策。
- 地区内单点服务:DSC设计为地区内的单点服务,负责缓存和处理该地区内所有DSA的上报数据,并进行负载分配。
2. 关键组件
-
DSA(数据服务代理):
- 负责处理请求并向DSC上报其当前负载和状态。
- 在启动时,DSA的CPU消耗较高,需在启动后的一段时间内进行负载监控。
-
DSC(数据服务控制器):
- 负责接收DSA的上报数据,计算分数并进行负载分配。
- 采用单点设计,缓存地区内的DSA状态信息,避免网络延迟带来的性能瓶颈。
3. 实现步骤
-
DSA上报机制:
- DSA在启动时和运行过程中定期向DSC上报其负载信息,包括CPU使用率、内存使用率、当前处理的请求数等。
- 上报频率可以根据实际情况进行调整,以平衡网络负载和实时性。
-
DSC负载分配逻辑:
- DSC接收到DSA的上报信息后,计算每个DSA的分数。分数可以基于以下因素:
- 当前CPU使用率
- 当前处理的请求数
- 健康检查状态(如是否故障)
- 根据分数对DSA进行排序,选择分数最高的DSA进行请求分配。
- DSC接收到DSA的上报信息后,计算每个DSA的分数。分数可以基于以下因素:
-
限流机制:
- 在DSC侧实现分配限流,确保不会将过多请求分配给负载过高的DSA。
- 可以设置阈值,当DSA的负载超过某个值时,DSC将不再分配请求给该DSA。
-
直接通信:
- 一旦DSC完成负载分配,服务侧直接与选定的DSA进行通信,减少DSC的负担,提高系统的整体性能。
-
监控与调整:
- 监控DSA的性能指标,定期评估负载分配策略的有效性,并根据实际情况进行调整。
关键点总结
- 实时性:通过DSA的实时上报机制,DSC能够快速响应负载变化,避免因延迟导致的性能问题。
- 单点设计:DSC作为地区内的单点服务,负责负载分配,避免了网络延迟对性能的影响。
- 动态调整:根据DSA的负载情况动态调整分配策略,确保系统的稳定性和高效性。
示例流程
以下是一个简单的伪代码示例,展示如何实现上述负载均衡方案:
class DSA:
def __init__(self, id):
self.id = id
self.cpu_usage = 0
self.request_count = 0
self.is_healthy = True
def report_status(self):
# 向DSC上报状态
return {
"id": self.id,
"cpu_usage": self.cpu_usage,
"request_count": self.request_count,
"is_healthy": self.is_healthy
}
class DSC:
def __init__(self):
self.dsa_list = []
def register_dsa(self, dsa):
self.dsa_list.append(dsa)
def allocate_dsa(self):
# 根据DSA的状态分配请求
healthy_dsa = [dsa for dsa in self.dsa_list if dsa.is_healthy]
sorted_dsa = sorted(healthy_dsa, key=lambda dsa: (dsa.cpu_usage, dsa.request_count))
# 选择分数最低的DSA
if sorted_dsa:
return sorted_dsa[0] # 返回分配的DSA
return None
# 使用示例
dsc = DSC()
dsa1 = DSA("dsa1")
dsa2 = DSA("dsa2")
# 注册DSA
dsc.register_dsa(dsa1)
dsc.register_dsa(dsa2)
# 模拟DSA状态上报
dsa1.cpu_usage = 30
dsa1.request_count = 5
dsa2.cpu_usage = 70
dsa2.request_count = 10
# 分配请求
allocated_dsa = dsc.allocate_dsa()
if allocated_dsa:
print(f"Request allocated to: {allocated_dsa.id}")
else:
print("No available DSA for allocation.")
进一步的考虑
- 故障恢复:设计故障恢复机制,确保在DSA故障时能够快速切换到其他健康的DSA。
- 负载预测:可以考虑引入负载预测算法,提前预判DSA的负载变化,进行更为智能的分配。
- 扩展性:设计时考虑系统的扩展性,以便在未来增加更多的DSA或地区支持。
通过这样的设计和实现方案,您可以有效地实现DS的负载均衡,确保系统在高并发情况下的稳定性和性能。