Transformer-Attention优化:FlashAttention(让语言模型拥有更长的上下文)

FlashAttention是一种新型注意力机制,旨在解决Transformer模型在处理长序列时的速度和内存问题。通过减少GPU内存(HBM和SRAM)之间的读写次数,实现了在BERT和GPT-2模型上的显著加速。FlashAttention采用分块计算和不存储注意力矩阵来减少内存需求,同时在保持模型质量的同时提高训练速度。此外,块稀疏FlashAttention扩展了序列长度,适用于64k序列,进一步提高了效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

FA主要思路还是通过tile技术减少在HBM和on-chip SRAM内存读写时间。FA在bert-large上端到端训练有15%的加速(seq length 512), 在GPT-2有3倍加速(seq length 1024)。 

主要贡献点

  1. 计算softmax时候不需要全量input数据,可以分段计算。
  2. 反向传播的时候,不存储attention matrix (N^2的矩阵),而是只存储softmax归一化的系数。

基于 FlashAttention 技术,清华将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值