【回答问题】ChatGPT上线了!推荐20个姿态估计深度学习模型

在这里插入图片描述

推荐20个姿态估计深度学习模型

好的,这里是 20 个深度学习模型用于姿态估计的推荐:

2D/3D Convolutional Neural Networks
Recurrent Neural Networks
Self-supervised Learning
Generative Adversarial Networks
Attention-based Networks
Graph Neural Networks
Multi-view Networks
Convolutional Pose Machines
End-to-end Learning
Hybrid Networks
Part-based Networks
Deformable Part Models
Dense Regression Networks
Spatial Transformer Networks
Adversarial Training
Deep Reinforcement Learning
Generative Models
Transfer Learning
Domain Adaptation
Few-shot Learning

推荐20个姿态估计深度学习模型源码

这是几个推荐的姿态估计深度学习模型源码:

OpenPose:https://github.com/CMU-Perceptual-Computing-Lab/openpose
AlphaPose:https://github.com/MVIG-SJTU/AlphaPose
HRNet:https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
SimpleBaselines:https://github.com/Microsoft/human-pose-estimation.pytorch
GluonCV:https://github.com/dmlc/gluon-cv
LightTrack:https://github.com/ZhouYanzhao/lighttrack
DensePose:https://github.com/facebookresearch/DensePose
AlphaPose-PyTorch:https://github.com/YuliangXiu/AlphaPose-PyTorch
PoseFlow:https://github.com/xingyizhou/PoseFlow
OpenPose-Plus:https://github.com/Daniil-Osokin/openpose-plus
LightTrack2:https://github.com/ZhouYanzhao/LightTrack2
OpenPose-Keras:https://github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation
AlphaPose-TensorFlow:https://github.com/MVIG-SJTU/AlphaPose-Tensorflow
StafiedPose:https://github.com/tensorboy/stafiedpose
AlphaPose-fast:https://github.com/MVIG-SJTU/AlphaPose-fast
SimplePose:https://github.com/xiaolonw/pose-hg-train
CMU-Perceptual-Computing-Lab:https://github.com/CMU-Perceptual-Computing-Lab
PoseEstimation.pytorch:https://github.com/Microsoft/PoseEstimation.pytorch
SimpleBaselines-pytorch:https://github.com/Microsoft/human-pose-estimation.pytorch
Realtime_Multi-Person_Pose_Estimation:https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

  • 2
    点赞
  • 4
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值