北京大学,重磅Nature

冰表面与许多物理和化学性质密切相关,如融化、冻结、摩擦、气体吸收和大气反应。

尽管进行了大量的实验和理论研究,但由于脆弱的氢键网络和复杂的预融过程,冰界面的确切原子结构仍然难以捉摸。

在此,来自北京大学的田野&徐莉梅&王恩哥&江颖等研究者利用基于一个一氧化碳功能化的尖端qPlus的低温原子力显微镜,实现了六方水冰(冰Ih)的基本(0001)表面结构的原子分辨率成像。相关论文以题为“Imaging surface structure and premelting of ice Ih with atomic resolution”于2024年05月22日发表在Nature上。

  674bfea129d53b88914061f722c3584e.png

在传统的观点中,晶体冰表面被简单地认为是一个从体块截断的平面,没有任何重建。然而,众所周知,固体表面上的原子倾向于重新排列以最小化表面能。在冰表面是否存在类似的重构,以及质子的排列顺序如何,仍然是难以捉摸的。

此外,冰表面甚至可以在低于整体融化温度的情况下融化,这与长期以来一直存在争议的所谓预融化过程相对应。只有在对最稳定冰表面的微观性质有了清晰认识的基础上,才能进一步探索表面预融的起源和机制。

用晶体学方法很好地测定了不同相块状冰的结构。相比之下,探测冰表面的要求要高得多,主要依靠表面敏感衍射和光谱技术,如低能电子衍射、氦原子散射、X射线吸收光谱和和频产生光谱。即使有一些迹象表明最外层与体结构不同,由于空间分辨率和空间平均效应较差,这些方法也无法解决冰表面和预熔结构的纳米尺度或原子非均匀性。

虽然高分辨率扫描隧道显微镜(STM)可以用来确定少数层冰膜的形态和结构,但由于其绝缘性质,STM无法接近大块冰。非接触式原子力显微镜(AFM)也被应用于实际空间的冰表面探测。

然而,由于尖端对脆弱的氢(H)键结构的干扰以及难以进入近程力区,在冰面上实现原子分辨率是具有挑战性的。有人认为,冰表面悬垂的氢键可能被短程重建,但冰表面氢键网络的详细拓扑结构尚未确定。

近年来,带有一氧化碳(CO)功能化尖端的弱微扰qPlus-AFM技术,已被证明可以成功地以原子分辨率探测导电表面上的低维水/冰结构,而将其应用于完全绝缘的多层冰或块状冰则是非常重要的。

在这项工作中,研究者提出了qPlus-AFM技术直接成像六边形水冰(冰Ih)的表面,这是自然界中最丰富的冰形式。通过结合高阶静电和泡利斥力的力成像,明确区分了水的分子取向和局部四面体结构,这使人们能够确定最稳定的基面(0001)的重建和初始预熔过程随着温度的升高。

研究者发现晶体冰-Ih表面由混合Ih和立方(Ic)堆叠纳米畴组成,形成周期超结构。密度泛函理论表明,通过减小悬空氢氧根键之间的静电斥力,这种重构表面在理想冰面上保持稳定。

此外,研究者观察到,随着温度的升高(高于120开尔文),冰表面逐渐变得无序,这表明预融化过程的开始。表面预熔发生在Ih和Ic畴之间的缺陷边界处,可以通过形成平面局部结构来促进表面预熔。

这些结果结束了长期以来关于冰表面结构的争论,并揭示了冰预融的分子起源,这可能导致对冰物理和化学理解的范式转变。

  001f23fd4736c1b39713eb6a9b3122b1.jpeg图1 六方冰(0001)表面Ih-和Ic-层畴的边界结构。

84d53c3c2dd45b208d95a5dfa196c818.jpeg图2 重建冰表面的周期性上层结构。

5a8e6cc2b084a28724880c8a10fe310e.png图3 不同冰表面相的形成能与序参量SOH的关系。

9a583714f6630cafde178e08d7de077d.jpeg图4 冰表面预融化的开始

综上所述,研究者工作直接可视化冰表面结构有序-无序转变的细节,为预融的起源和机制提供了不同的分子视角

缺陷Ih和Ic边界的固有存在以及冰表面的PLSs可能在相变、吸附、表面反应以及冰的成核和生长中起着不可或缺的作用。

此外,本工作所获得的知识也有助于理解冰表面准液体层的形成和结构,为未来探索冰表面的详细相图提供了机会。

【参考文献】

Hong, J., Tian, Y., Liang, T. et al. Imaging surface structure and premelting of ice Ih with atomic resolution. Nature (2024).

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值