

[机器学习聚类算法实战-1] | Scikit-Learn工具包进阶指南:机器学习聚类算法之层次聚类、特征集聚、均值移位聚类、k-均值聚类实战分析
机器学习中的聚类分析是一种无监督学习方法,旨在将数据点划分为相似的组或簇,使得同一组内的数据点彼此相似,而不同组之间的数据点则相对较不相似。聚类分析可以帮助我们理解数据的内在结构,发现数据中隐藏的模式,并将数据进行自然的分组,从而为进一步分析或决策提供基础。K-Means 聚类:将数据点分成预先指定的 k 个簇,每个簇具有最小化簇内平方误差的中心点。K-Means 是一种迭代算法,通过不断更新簇中心点来优化聚类结果。层次聚类:逐步将数据点合并到不断增长的聚类中,形成层次结构。


AI:新书预告—从机器学习避坑指南(分类/回归/聚类/可解释性)到大语言模型落地手记(RAG/Agent/MCP),一场耗时5+3年的技术沉淀—“代码可跑,经验可抄”—【一个处女座的程序猿】携两本AI
AI:新书预告—从机器学习避坑指南(分类/回归/聚类/可解释性)到大语言模型落地手记(RAG/Agent/MCP),一场耗时5+3年的技术沉淀—“代码可跑,经验可抄”—【一个处女座的程序猿】携两本AI实战书终于正式来了!目录相关文章一、写书背景二、新书内容速览:理论+实战+前沿,直击AI学习痛点三、新书上市 & 读者专属福利四、结尾相关文章LLMs:LLM一天,人间一年—2024年度大模型技术三+四大趋势梳理(数据/算法/算力+



【路由协议LEACH和EAMMH】无线传感器网络中的聚类:使用MATLAB对EAMMH和LEACH协议的性能比较研究(Matlab代码实现)
摘要传感器网络的主要设计问题之一是保护每个传感器节点中可用能量。增加网络的寿命对于无线传感器网络非常重要。为此,已经开发了许多路由算法。在所有这些算法中,聚类算法在增加网络寿命以及其中节点的效率方面获得了很多重要性。聚类为延长无线传感器网络寿命提供了一种有效的方式。本文详细比较了两种著名的路由协议,即LEACH和EAMMH,在几种一般情景下的表现,并对模拟结果与已知的以能量和网络寿命为主要指标的度量进行了简要分析。本文将介绍从对这些协议结果的分析中得出的结果和观察。关键词。
