

【读点论文】Deep Clustering for Unsupervised Learning of Visual Features聚类生成伪标签,伪标签指导网络学习更具判别力特征,左脚踩右脚
本文提出了DeepCluster,一种用于无监督视觉特征学习的深度聚类方法。该方法结合卷积神经网络(CNN)和标准聚类算法(如k-means),通过迭代进行特征聚类和网络参数更新,实现端到端的无监督训练。具体步骤包括:首先使用当前网络提取特征,通过k-means生成伪标签,然后利用这些伪标签更新网络参数。为避免平凡解,DeepCluster处理空簇和不平衡簇问题,如重新分配空簇中心、按簇大小加权损失函数。实验表明,DeepCluster在ImageNet和YFCC100M等大规模数据集上训练时,显著超越了现
