


Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks论文分享
这种方法也应用于知识密集型对话中,在这些对话中,生成器直接基于检索到的文本进行条件生成,尽管这些文本是通过TF-IDF获取的,而非端到端学习的检索方式[9]。不过,方法也有一些不同之处,相对较少强调对检索到的内容进行轻微编辑,而是侧重于聚合多个检索到的内容,同时还包括学习潜在检索,以及检索证据文档而非相关的训练对。与先前的工作相比,这项工作具有一些积极的社会意义:它更紧密地基于真实的事实知识(在本文中为维基百科),这使得生成内容时更少产生“幻觉”,更符合事实,并且提供了更多的可控性和可解释性。
