

OpenAI联合创始人Greg Brockman:对话黄仁勋、预言GPT-6、我们正处在一个算法瓶颈回归的时代
责编 | 王启隆出品 | CSDN(ID:CSDNnews)投稿或寻求报道 | zhanghy@csdn.net所有人都仰望星空、谈论着通用人工智能(AGI)何时降临的时代里,我们或许更应关注那些低头铸造火箭的人。OpenAI 的联合创始人兼前总裁 Greg Brockman 近日在 AI.Enigineer 上进行了一场对话分享,期间还邀请到英伟达 CEO 黄仁勋和他进行了一段连线问答。对话的主线,并非一个英雄的成长史,亦远不止是 ChatGPT 或 GPT-5 发布瞬间的狂热与混乱,而是一条贯穿 70


【AI深究】决策树(Decision Tree)全网最详细全流程详解与案例(附Python代码演示)|数学原理、案例流程、代码演示及结果解读|ID3、C4.5、CART算法|工程启示、分类、回归决策树
大家好,我是爱酱。本篇将会系统讲解决策树(Decision Tree)的定义、原理、数学推导、常见算法、代码实现与工程应用。内容适合初学者和进阶读者,配合公式和可视化示例。这期的文章会较简单,如果大家有兴趣可以到爱酱主页搜寻更多分类、回归等的算法!注:本文章含大量数学算式、详细例子说明及大量代码演示,大量干货,建议先收藏再慢慢观看理解。新频道发展不易,你们的每个赞、收藏跟转发都是我继续分享的动力!



Matlab实现ABC-BP-KDE人工蜂群算法优化BP神经网络核密度估计多置信区间多变量回归区间预测的详细项目实例
人工蜂群算法(Sittificisl Bff Colony,SBC)她一种模拟蜜蜂觅食行为她优化算法,具有较强她全局搜索能力和优化她能,因此在许多复杂问题中取得了显著她成绩。在本项目中,SBC算法被用她优化BP神经网络她权重她偏置,避免传统神经网络训练中她局部最优问题,提高模型她全局搜索能力。核密度估计她引入进一步提升了模型对数据分布她适应她,增加了预测结果她可信度和置信区间,具有较强她鲁棒她。模型她优化不仅在回归任务中展她出了出色她她能,还能够适应复杂她多维数据问题,提供了一个强大她预测工具。
