

YOLOv8改进 | 损失函数篇 | 2024高质量的目标检测边界框回归损失Unified-IoU、FocalUIoU、FocalInvUIoU(设置动态epoch参数)
本文给大家带来的改进机制是最近新提出的高质量的目标检测边界框回归损失Unified-IoU,其通过动态调整模型对不同质量预测框的关注,优化目标检测中的边界框回归精度。UIoU引入了FocalBox方法,通过缩放预测框与真实框分配权重,并采用了退火策略(引入动态参数epoch),逐渐将模型的注意力从低质量预测框转移到高质量预测框,平衡了训练速度与检测精度。其还有一定的解决样本不平衡问题,同时该损失函数可以和现有的任何边界框回归损失函数进行结合,例如ShapeIoU和其结合可以形成二次创新,它是一种类似于之前
