

数字果园管理系统的设计与实现(Tensorflow的害虫识别结合高德API的害虫定位与Websocket的在线聊天室)
因为害虫图片数据集有限,且在计算资源、硬件等方面受限,在训练上可能有失准确率,最终选择的版本(本系统使用的害虫识别模型)训练准确率:96.15%;验证准确率:90.55%;测试Top-1:78.90%;测试Top-3:93.87%;测试Top-5:96.78%。以下是多版本训练模型的表格:模型转化为TFLite预测脚本PredictController预测控制器害虫识别过程展示害虫识别初始显示:通过点击左侧蓝色按钮“点击上传害虫图片”进行上传图片进行上传,右侧将展示识别三个识别结果(由模型
