
YOLOv11改进 | 主干/Backbone篇 | 2024最新目标检测网络MobileNetV4改进YOLOv11(支持根据yolov11版本nsmlx进行自由放缩通道数)
本文给大家带来的改进机制是,其发布时间是2024.5月。MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点采用了通用反向瓶颈(UIB)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。这些创新有助于在不牺牲准确性的情况下,显著提高推理速度和计算效率。MobileNetV4作为一种移动端的网络,其实它的论文中主要是配合蒸馏技术进行改进,大家可以搭配本专栏的蒸馏进行二次创新涨点。欢迎大家订阅我的专栏一起学习YOLO!



Deformable DETR:Deformable Transformers for End-to-End Object Detection论文学习
因为DETR本身的计算量大,收敛速度慢。其次是小目标检测效果差。主要原因是Deformable DETR注意力模块只关注一个query周围的少量关键采样点集,采样点的位置并非固定,而是可学习的。同时,受到deformable convolution(可变性卷积)的启发,认为Attention模块也可以关注更灵活的采样点,让每个位置不必和所有位置交互计算,只需要和部分(学习来的,重要的部分)进行交互即可,进而提出deformable attention模块。
