摘要
本文通过游戏化的比喻,形象解释了三种常见的概率分布:二项分布、泊松分布和几何分布。
二项分布描述在n次独立试验中成功k次的概率,如10连抽中SSR的次数;泊松分布适用于单位时间或空间内事件发生的次数,如每分钟刷怪的数量;几何分布则关注第一次成功所需的尝试次数,如首次抽到SSR所需的抽卡次数。
文章通过具体的游戏场景(如抽卡、刷怪、装备掉落)帮助理解这些分布的应用,并提供了总结口诀,便于记忆和区分。
一、二项分布(Binomial Distribution)
1. 形象解释
比喻:扔硬币多次,数正面有几个
想象你有一枚硬币,每次扔都有正面(成功)和反面(失败)两种结果。你连续扔10次,想知道“正面朝上”出现了几次?
这就是二项分布!
- 每次扔硬币是一次伯努利试验
- 总共扔n次,每次成功概率p
- 统计n次中“成功”出现的次数
2. 游戏中的应用
- 抽卡10连,出SSR的次数
比如每次抽卡出SSR概率1%,10连抽中出SSR的次数服从二项分布。 - 副本掉落稀有装备的次数
打10次副本,每次掉稀有装备概率p,统计10次中掉落的次数。 - 射击游戏中连续射击命中的次数
连续射击n次,每次命中概率p,统计命中次数。
二、泊松分布(Poisson Distribution)
1. 形象解释
比喻:一分钟内怪物刷新的数量
想象你在玩塔防游戏,每分钟会随机刷出怪物,平均每分钟刷λ只,但每分钟具体刷多少只是随机的。
这就是泊松分布!
- 适合描述单位时间/空间内,某事件发生的次数
- 事件发生是“稀疏且独立”的
2. 游戏中的应用
- 单位时间内怪物刷新数
比如平均每分钟刷5只怪,实际每分钟刷怪数服从泊松分布。 - 服务器每小时收到的玩家举报数
平均每小时收到λ个举报,实际收到的数量服从泊松分布。 - 宝箱掉落稀有物品的总次数
在大地图上,单位时间内全服玩家获得稀有物品的次数。
三、几何分布(Geometric Distribution)
1. 形象解释
比喻:抽到SSR前需要抽几次?
你在抽卡,每次抽到SSR的概率是p。你想知道:“我需要抽多少次,才能第一次抽到SSR?”
这就是几何分布!
- 每次抽奖是独立的伯努利试验
- 统计“第一次成功”前需要的尝试次数
2. 游戏中的应用
- 抽卡首次获得SSR所需次数
每次抽卡中SSR概率p,问第一次中SSR需要抽几次? - 打怪首次掉落稀有装备所需次数
每次打怪掉稀有装备概率p,问第一次掉落需要打几次? - 闯关首次通关所需尝试次数
每次闯关成功概率p,问第一次通关需要尝试几次?
四、三者对比口诀
- 二项分布:n次试验,成功了几次?(“10连抽出几个SSR?”)
- 泊松分布:单位时间/空间内,事件发生了几次?(“1分钟刷出几只怪?”)
- 几何分布:第一次成功要试几次?(“几次才能第一次抽到SSR?”)
五、游戏应用场景小结
分布类型 | 典型问题举例 | 游戏场景举例 |
---|---|---|
二项分布 | n次试验中成功k次的概率 | 10连抽出SSR的次数 |
泊松分布 | 单位时间/空间内事件发生k次的概率 | 1分钟刷怪数、服务器掉宝数 |
几何分布 | 第一次成功需要试几次的概率 | 第一次抽到SSR需要几次抽卡 |
下面我用生活化、游戏化的比喻,把公式和含义结合起来,帮你形象理解二项分布、泊松分布、几何分布的公式。
1. 二项分布公式(Binomial)
生活/游戏场景
“10连抽,出SSR的次数”
- 每次抽卡,出SSR概率是 ( p )
- 抽 ( n ) 次,问“正好出 ( k ) 个SSR”的概率是多少?
2. 泊松分布公式(Poisson)
生活/游戏场景
3. 几何分布公式(Geometric)
总结口诀
- 二项分布:
“多次试,算中几个,排列组合乘概率” - 泊松分布:
“单位时空,算事件数,平均能量分配法” - 几何分布:
“连跪几次,终于中头奖,前面全跪最后中”