§ 1 λ 1 \lambda 1λ-矩 阵
设 P P P 是一个数域, λ \lambda λ 是一个文字, 作多项式环 P [ λ ] P[\lambda] P[λ].
一个矩阵, 如果它的元素是 λ \lambda λ的多项式,即 P [ λ ] P[\lambda] P[λ] 的元素,
就称为 λ \lambda λ-矩阵. 在这一章, 我们来讨论
λ \lambda λ-矩阵的一些性质,并用这些性质来证明上一章第入节中关于若尔当标准形的主要定理.
因为数域 P P P 中的数也是 P [ λ ] P[\lambda] P[λ] 的元素,所以在
λ \lambda λ-矩阵中也包括以数为元素的矩阵. 为了与 λ \lambda λ-矩阵相区别,
有时我们把以数域 P P P 中的数为元素的矩阵称为数字矩阵. 以下用
A ( λ ) , B ( λ ) , ⋯ \boldsymbol{A}(\lambda), \boldsymbol{B}(\lambda), \cdots A(λ),B(λ),⋯ 表示
λ \lambda λ-矩阵。
我们知道, P [ λ ] P[\lambda] P[λ]
中的元素可以作加、减、乘三种运算,并且它们与数的运算有相同的运算规律.
而矩阵加法与乘法的定义只是用到其中元素的加法与乘法, 因此,
我们可以同样定义 λ \lambda λ-矩阵的加法与乘法,
它们与数字矩阵的运算有相同的运算规律. 这些就不重复叙述与证明了.
行列式的定义也只用到其中元素的加法与乘法, 因此, 同样可以定义
n ×
高等代数(八)-线性变换09:λ-矩 阵
最新推荐文章于 2024-02-06 23:56:51 发布