编辑:CrazyRabbit
日期:2022年7月1日
0. 前言
很多工程师对转向几何的一些专业术语不是很理解,比如阿克曼、阿克曼角、阿克曼误差、阿克曼率、理想转向角等。
本文重点介绍乘用车设计中的转向几何,重点介绍阿克曼转向几何相关术语和设计校核。内容以Adams-Car转向仿真试验工况为例介绍,所有名词的相关定义都以Adams-Car为准,ABD/MTS试验台的相关定义可能会有符号上或其他差异。
1. 阿克曼转向几何
当车辆在水平路面以极低的速度行驶时,此时可以忽略轮胎侧偏角,为了使各个车轮都处于纯滚动状态,希望所有车轮都围绕一个瞬时旋转中心运动,如下图所示:
其中,L/W分别代表轴距和轮距,
δ
i
\delta_i
δi
δ
o
\delta_o
δo 分别代表内轮转角和外轮转角。如果满足上述纯滚动的
条件假定,那么存在关系式:
cot
δ
o
−
cot
δ
i
=
w
/
L
\cot{\delta_o}-\cot{\delta_i}=w/L
cotδo−cotδi=w/L(公式1)
将满足以上关系式的转向几何设定,称为阿克曼转向几何(Ackerman Steering Geometry)。
2. 阿克曼(Ackerman)
因为左右(内外)转向角存在差异,在Adams中定义该差值为转向阿克曼(
δ
a
c
k
\delta_{ack}
δack):
δ
a
c
k
=
δ
r
i
g
h
t
−
δ
l
e
f
t
\delta_{ack}=\delta_{right}-\delta_{left}
δack=δright−δleft(公式2)
如下图为某车型原硬点和优化硬点后的ackerman曲线:
3. 阿克曼角(Ackerman Angle)
定义轴距除以转弯半径的反正切为阿克曼角(
δ
a
\delta_{a}
δa):
δ
a
=
tan
−
1
(
L
/
R
)
\delta_{a}=\tan^{-1}(L/R)
δa=tan−1(L/R)(公式3)
注意:Adams中,以内轮计算转弯半径R。
如下图,为某车型原硬点和优化硬点后的ackerman角曲线:
4. 理想转向角(Ideal Steer Angle)
因为Adams中以内轮计算转弯半径,故定义满足阿克曼转向几何的外轮转向角为理想转向角。根据上述的阿克曼转向几何公式(公式1)计算即可,或者下列公式4:
δ
I
d
e
a
l
=
tan
−
1
(
L
/
(
R
+
W
/
2
)
)
\delta_{Ideal}=\tan^{-1}(L/(R+W/2))
δIdeal=tan−1(L/(R+W/2))(公式4)
5. 阿克曼误差(Ackerman Error)
但实际上,无论如何优化转向几何(优化相关硬点),都无法满足理想的阿克曼转向关系,即外轮不等于理想转向角。
注意:这里说的满足阿克曼转向几何,指的是从0度到最大转向角整个齿条行程内,任何时刻都满足阿克曼转向几何关系。
定义实际的外轮转角与理想转向角(Ideal Steer Angle)之间的差为阿克曼误差(Ackerman Error)。可以得知,对于左转,左轮为内轮,右轮为外轮,左轮的阿克曼误差定义为0。
如下图,为某车型原硬点和优化硬点后的ackerman Error曲线:
6. 阿克曼率(Ackerman Percent)
因为无法达到理想的阿克曼转向几何,定义阿克曼率(
R
A
R_{A}
RA )来量化满足阿克曼转向几何的程度。
R
A
=
100
%
∗
a
c
k
e
r
m
a
n
/
I
d
e
a
l
a
c
k
e
r
m
a
n
R_{A}=100\%*ackerman/Ideal_{ackerman}
RA=100%∗ackerman/Idealackerman
即:
R
A
=
100
%
∗
(
δ
R
−
δ
L
)
/
(
δ
I
d
e
a
l
_
R
−
δ
I
d
e
a
l
_
L
)
R_{A}=100\%*(\delta_R-\delta_L)/(\delta_{Ideal\_R}-\delta_{Ideal\_L})
RA=100%∗(δR−δL)/(δIdeal_R−δIdeal_L)
解释:分子代表实际的左右轮转角的差值,分母是理想状况下左右轮转角的差值。
如下图,为某车型原硬点和优化硬点后的ackerman Percent曲线:
7. 阿克曼率校核
对转向几何的设计做校核时,通常考虑阿克曼率,阿克曼率越接近100%,轮胎越接近纯滚动状态,轮胎的磨损越小。不同厂家的校核标准不同,常见的校核标准有:
- 内轮最大转角时,对应的阿克曼率要>60%
- 内轮转角为20°时,对应的阿克曼率要>45%