【庞加莱几何-01】从第五公理开始

在这里插入图片描述

一、说明

庞加莱几何虽然也是双曲几何,但是有一些公理是独特的。本篇将开始梳理庞加莱几何的公理体系,将隐含的定理和属性挖掘出来。

二、平行假设

欧几里得《几何原本》中的第五条公设可以改写为:
【给定一条线和不在其上的点,可以通过该点绘制一条与给定线平行的线。】
该假设在 3D 中并不成立,但在 2D 中似乎是一个有效的陈述。然而,考虑到假设的重要性,看似有效的陈述还不够好。
在这里插入图片描述
假设(或公理)是充当理论起点的陈述。由于假设是一个起点,因此无法使用先前的结果来证明。作为一个无法被证明的陈述,公设应该是不言而喻的。欧几里得几何原理建立在五个公设之上。 2000 多年来,第五条公设一直被认为不如其他公设直观,而且不够不证自明。人们已经进行了许多尝试来使用其他四个公设来证明第五个公设。所有这些尝试都失败了。十九世纪的研究表明,第五条公设独立于其他公设。建立第五条公设不成立的几何理论是可能的。这种几何形状称为非欧几里得几何形状。此外,可以证明非欧几里德理论可以与欧几里德理论一样一致。如果一个理论不包含任何矛盾,那么它就是一致的。

如上所述,与平行假设相反的说法是,要么没有线,要么至少有两条线“与通过该点的给定线平行”。可以证明,如果至少有两条线,则实际上有无限多条“平行于……”的线。

如果将平行公设替换为:
【1】给定一条线和不在其上的点,无法通过该点绘制与给定线平行的线。
【2】给定一条线和不在其上的点,可以通过该点绘制无限多条与给定线平行的线。

三、距离、角度和直线

在这里插入图片描述
《欧几里得几何原本》中的定理建立在许多假设和许多定义的基础上。定义 23 指出两条线如果不相交则平行。定义中没有任何内容表明两条平行线之间的距离在任何地方都相同。仅当您假设平行线看起来像铁轨时,平行假设才显得显而易见。如果您重新定义一条线的含义,则可能会发现两条平行线要么彼此汇聚,要么彼此发散。

在非欧几里得几何中,与直线相对应的概念是称为测地线的曲线。在非欧几里德几何中,两点之间的最短路径是沿着这样的测地线或“非欧几里德线”。

当您重新表述平行公设时,欧几里得几何中使用第五公设的所有定理都将发生变化。举个例子;在欧几里得几何中,三角形的内角和是180°,在非欧几里得几何中,情况并非如此。

四、椭圆几何模型

在这里插入图片描述
椭圆几何建模的一种简单方法是考虑球体表面的几何形状。球体上两点之间的最短路径沿着所谓的大圆。大圆是与球体具有相同半径和相同中心的圆。大圆是测地线。

如果球体上的两点直接相对(如北极和南极),则两点之间有无数条最短路径。如果这些点不是对极点,则只有一条最短路径。

两个不相同的大圆必定相交。因此,球体表面不存在平行线。
三角形由三个顶点和沿着大圆穿过每对顶点的三段弧定义。
在这里插入图片描述
三角形顶点处的内角可以在通过该顶点的切平面上测量。椭圆三角形的内角和始终 > 180°。
在这里插入图片描述

五、使用庞加莱圆盘模型的双曲几何

庞加莱圆盘(二维)是一个开圆盘,即由圆包围但不包含圆的一组点。使用庞加莱圆盘模型时,仅考虑庞加莱圆盘中的点。庞加莱圆盘构成了整个世界。开圆盘的边界是无穷远的圆, C ∞ C_∞ C

通过 A 和B点 的测地线 定义为通过 A 和B的圆弧垂直于 C ∞ C_∞ C。如果A 和B 位于直径 C ∞ C_∞ C上,该直径是通过 A和B 的测地线 。
在这里插入图片描述
每个测地线由两个点定义。给定一条白色测地线和一个不在其上的白点,则有无限多个测地线通过不与白色测地线相交的白点。
三角形的内角是在相应的切线之间测量的。内角之和始终小于 180°。如果三角形的顶点向圆C∞移动,角度和趋于0。位于C∞的点 称为理想点。顶点趋于无穷大时的极限三角形 (C∞) 称为理想三角形。理想三角形的角和为 0。由于理想三角形的顶点位于无穷远处,因此理想三角形的周长是无穷大。进一步可以证明,理想三角形的面积为π。因此,最上面动画中的所有三角形都具有相同的双曲面积。
在这里插入图片描述

使用庞加莱半平面模型的双曲几何
一条线将平面分成两半。使用庞加莱半平面模型时,仅考虑半个平面(不包括直线)中的点。

通过 A 和B点的测地线 定义为通过 A和B 的圆弧 即垂直于边界线。如果A 和B位于垂直于边界的直线上,从交点(不包括该点)穿过 A 和B的射线是测地线。

在这里插入图片描述

六、练习

6.1 练习一

对于非欧几里得几何,欧几里得《几何原本》中除平行公设外的所有公设都应该为真。如果您使用球体上的几何体来模拟椭圆几何体,则情况并非如此(取决于您如何解释第一个假设)。使用公设 1 指南来解释为什么球体上的几何形状(如文本中所解释的)不是严格的非欧几里得几何。

6.2 练习二

椭圆测地线的 GeoGebra 构造。

使用 GeoGebra 显示 3D 图形窗口!您可以使用命令或工具来制作球体和平面。要使用命令,请开始输入 Sphere(或 Plane),GeoGebra 将向您显示完成代码的各种替代方法。

球体上的圆可以通过球体与平面相交来构造。您可以使用“相交两个曲面”工具进行相交。通过选择一个适当的平面与球体相交来构建大圆。

制作一个球体并放置两个点 A 和B 在球体上。通过 A 和B构造测地线 通过使用适当的平面。隐藏所有辅助对象。

6.2 练习三

使用 GeoGebra 测量球体上两条测地线之间的角度。

放三点A,B 和C 在球体上构造两条测地线,形成椭圆角 ∠ABC。使用通过 B 的平面上的点来测量角度 与球体相切。构造切平面。在平面上构造两个可用于测量角度的点。测量角度并隐藏所有辅助对象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值