三维点云
普通网友
这个作者很懒,什么都没留下…
展开
-
3D点云深度学习
3D点云深度学习在自动驾驶中关于三维点云的深度学习方法应用、三维场景语义理解的方法以及对应的关键技术介绍。数据但是对于3D点云,数据正在迅速增长。大有从2D向3D发展的趋势,比如在opencv中就已经慢慢包含了3D点云的处理的相关模块,在数据方面点云的获取也是有多种渠道, 无论是源于CAD模型还是来自LiDAR传感器或RGBD相机的扫描点云,无处不在。 另外,大多数系统直接获取3D点云而不是拍摄图像并进行处理。因此,在深度学习大火的年代,应该如何应用这些令人惊叹的深度学习工具,在3D点云上的处理上原创 2020-05-31 05:56:17 · 2574 阅读 · 1 评论 -
3D点云完美匹配
3D点云完美匹配The Perfect Match: 3D Point Cloud Matchingwith Smoothed Densities地址链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Gojcic_The_Perfect_Match_3D_Point_Cloud_Matching_With_Smoothed_Densities_CVPR_2019_paper.pdf代码链接:https://github.com/zgo原创 2020-05-25 19:43:03 · 2022 阅读 · 1 评论 -
Geo-CNN的三维点云
Geo-CNN的三维点云Modeling Local Geometric Structure of 3DPoint Clouds using Geo-CNN摘要深度卷积神经网络(CNNs)的最新进展促使研究人员采用CNNs直接对三维点云中的点进行建模。局部结构的建模已经被证明是卷积结构成功的关键,研究人员在特征提取层次中开发了局部点集的建模。对于局部区域内点间几何结构的显式建模研究却很少。提出GeoCNN,它对每个点及其局部邻域应用一种称为GeoConv的类卷积运算。在提取中心点与相邻点的边缘特征时原创 2020-05-25 18:34:41 · 620 阅读 · 0 评论 -
3D-LiDAR
3D-LiDAR结合光学+激光扫描+数据处理技术,实现对人和物体的无盲点检测。利用专有光学技术实现高精度,高分辨率三维扫描。到目前为止,传感器只能准确地检测出物体的存在,而且很难感知目标的大小和形状。为了提高精度,必须增加激光器的数量,这就产生了激光束之间出现盲点的新问题。将其专有的光学技术应用于这些技术挑战,并创建了一个广域3D激光雷达,仅使用一束具有高扫描精度、高分辨率和无盲点的激光。高精度,广域扫描能力。专有激光投影/接收技术+广域扫描技术。三维激光雷达发射激光搜索一个区域的对象,并测量一个原创 2020-05-25 10:05:14 · 625 阅读 · 0 评论 -
3D惯导Lidar SLAM
3D惯导Lidar SLAMLIPS: LiDAR-Inertial 3DPlane SLAM摘要本文提出了最近点平面表示的形式化方法,并分析了其在三维室内同步定位与映射中的应用。提出了一个利用最近点平面表示的无奇异平面因子,并在基于图的优化框架中证明了它与惯性预积测量的融合。所得到的LiDAR惯性三维平面SLAM(LIPS)系统在定制的LiDAR模拟器和实际实验中都得到了验证。导言准确、鲁棒的室内定位和地图绘制是非调音机器人应用的基本要求。室内环境通常是丰富的指示信息,如直线和平面,应加以利用原创 2020-05-23 14:56:25 · 877 阅读 · 0 评论 -
3D惯导Lidar仿真
3D惯导Lidar仿真LiDAR-Inertial 3D Plane Simulator摘要提出了最近点平面表示的形式化方法,并分析了其在三维室内同步定位与映射中的应用。提出了一个利用最近点平面表示的无奇异平面因子,并在基于图的优化框架中证明了它与惯性预积测量的融合。所得到的LiDAR惯性三维平面SLAM(LIPS)系统在定制的LiDAR模拟器和实际实验中都得到了验证。I.介绍准确、鲁棒的室内定位和映射是自动机器人许多应用的基本要求。室内环境通常是丰富的指令信息,如直线和平面,应加以利用,以实现高原创 2020-05-23 06:13:48 · 939 阅读 · 0 评论 -
3D结构光
3D结构光3D结构光的整个系统包含结构光投影设备、摄像机、图像采集和处理系统。其过程就是投影设备发射光线到被测物体上,摄像机拍摄在被测物体上形成的三维光图形,拍摄图像经采集处理系统处理后获得被测物体表面数据。在这个系统中,当相机和投影设备相对位置一定时,投射在被测物体上的光线畸变程度取决于物体表面的深度,所以在拍摄图像中可以得到一张拥有深度的光线图像。3D结构光的根本就是通过光学手段获取被拍摄...原创 2020-04-28 08:14:59 · 3078 阅读 · 0 评论 -
三维点云去噪无监督学习:ICCV2019论文分析
三维点云去噪无监督学习:ICCV2019论文分析Total Denoising: Unsupervised Learning of3D Point Cloud Cleaning论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Hermosilla_Total_Denoising_Unsupervised_Learning...原创 2020-03-29 10:59:52 · 2534 阅读 · 1 评论