如何进行“单细胞转录组+单细胞ATAC”联合分析?

单细胞转录组已在生物学研究中广泛应用,但仅靠此技术无法全面反映细胞核内的染色质状态及其调控机制。为此,单细胞ATAC测序技术应运而生,它能在单细胞水平上揭示染色质的可及性,提供基因调控元件活性的重要信息。将单细胞ATAC与单细胞转录组相结合,能综合解读基因表达调控,解析细胞分化的动态过程,鉴定新的细胞亚群和功能状态,研究疾病相关基因变异的影响,并提高数据分析的准确性。这种多组学的整合分析在免疫学、发育生物学、神经科学及肿瘤研究等领域展现出强大的应用潜力,为我们深入理解生命活动提供了全新的视角和工具。

今天,我们将介绍单细胞ATAC和单细胞转录组联合分析的主要内容和优势。

1. 细胞注释更精准、更全面

单细胞转录组测序通过分析基因表达水平来识别和注释不同的细胞亚群,而单细胞ATAC测序则通过检测染色质的开放状态来揭示基因调控元件及其活性,进而辅助细胞亚群的注释。联合这两种技术,能够综合利用基因表达和染色质开放性两方面的信息,实现更精准和全面的细胞亚群注释。

下图展示了利用Seurat联合分析的步骤和方法。图A和图B展示了比较参考集和查询集的数据分布,采用了典型相关分析(Canonical Correlation Analysis)和L2范数。图C展示了如何识别参考集和查询集之间的“锚点”(anchors),这些锚点用于对齐两个数据集。图D显示了高得分和低得分的对应关系,其中高得分表示锚点在局部邻域内的一致性,而低得分表示不一致性。图E则展示了不同细胞类型在参考集和查询集中的分布。整体而言,这些图表展示了如何通过联合分析对齐和比较不同数据集,从而揭示它们的相似性和差异性。

图片

图1 单细胞转录组和单细胞ATAC的“锚点”联合

2. 基因表达和染色质可及性相互印证

通过计算单细胞ATAC-seq和单细胞转录组(scRNA-seq)数据的相关性,利用Pearson相关性系数来评估每个样本中两组学数据的相关性强弱。scATAC-seq数据用于量化每个细胞中基因的开放性,方法是通过测量基因及其上游2kb内的peak丰度。基因开放性越高,表明该基因越有可能受到转录因子的调控或与RNA聚合酶结合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值