YoloV5+ROS2直接发布出物品坐标

大家好,我是秃头了依然在敲代码的小鱼。

最近小鱼又整了一个开源库,结合YOLOV5订阅图像数据和相机参数,直接给出一个可以给出识别物品的坐标信息,方便进行识别和抓取,目前适配完了2D相机,下一步准备适配3D相机。

开源地址:https://github.com/fishros/yolov5_ros2

YoloV5_ROS2

基于YoloV5的ROS2封装,给定模型文件和相机参数可以直接发布三维空间置进行抓取操作。

1.安装依赖

sudo apt update
sudo apt install python3-pip ros-humble-vision-msgs
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple yolov5

2.编译运行

colcon build
source install/setup.bash
ros2 run yolov5_ros2 yolo_detect_2d --ros-args -p device:=cpu -p image_topic:=/image

使用真实相机,修改默认话题image_topic:=/image

ros2 run image_tools  cam2image --ros-args -p width:=640 -p height:=480 -p frequency:=30.0 -p device_id:=-1

在这里插入图片描述

3.订阅结果

识别结果通过/yolo_resutl话题发布出去,包含原始的像素坐标、和归一化后的x和y坐标(相机坐标系下)。

ros2 topic echo /yolo_result

<think>好的,用户想了解如何在ROS机器人中使用深度相机进行目标检测。首先,我需要回忆一下相关的ROS组件和常用工具。记得Intel RealSense相机有对应的ROS驱动包,比如realsense-ros。这可能是一个关键点,用户可能需要安装并配置这个驱动包来获取深度图像数据。 接下来,目标检测部分,通常会用到深度学习模型,比如YOLO或SSD。在ROS中,可能有现成的包或者节点可以调用这些模型,比如darknet_ros用于YOLO。或者用户可能需要自己编写节点,使用OpenCV或TensorFlow等库来处理图像数据。 然后,需要将深度信息与检测到的目标结合起来。可能需要使用点云数据或者深度图像来获取目标的三维位置。这里可能需要用到坐标变换(TF)和点云处理库(PCL),或者直接通过深度图像的像素值获取距离。 用户还可能需要示例教程,所以得提供一些具体的步骤,比如安装驱动、运行目标检测节点、订阅图像话题,以及处理深度数据。此外,可能需要注意相机和机器人之间的坐标校准,确保检测到的目标位置准确。 还需要考虑引用之前提供的参考资料,比如引用[1]提到的RealSense深度相机的ROS驱动,引用[2]中的障碍物地图层可能涉及如何处理深度数据,引用[3]关于深度学习在姿态估计中的应用可能与目标检测相关。 最后,检查是否有遗漏的步骤,比如是否需要标定相机,如何处理实时数据流,以及如何可视化检测结果。确保回答结构清晰,步骤明确,并提供相关资源链接或示例代码供用户参考。</think>在ROS机器人中使用深度相机实现目标检测,需要结合传感器驱动、图像处理和深度学习技术。以下是详细方法和示例教程: ### 一、准备工作 1. **安装深度相机驱动** 以Intel RealSense D435为例,安装ROS驱动包: ```bash sudo apt-get install ros-$ROS_DISTRO-realsense2-camera ``` 启动相机节点: ```bash roslaunch realsense2_camera rs_camera.launch ``` 可获取$depth/image_raw$(深度图像)和$color/image_raw$(RGB图像)话题[^1]。 2. **安装深度学习框架** 推荐使用TensorFlow或PyTorch: ```bash pip install tensorflow-gpu torch torchvision ``` ### 二、目标检测实现方法 #### 方法1:使用现成ROS包(如darknet_ros) ```bash # 安装YOLOROS接口 git clone https://github.com/leggedrobotics/darknet_ros.git catkin_make -DCMAKE_BUILD_TYPE=Release ``` 配置检测参数后运行: ```bash roslaunch darknet_ros yolo_v3.launch ``` #### 方法2:自定义Python节点 ```python #!/usr/bin/env python import rospy from sensor_msgs.msg import Image from cv_bridge import CvBridge import cv2 import torch class ObjectDetector: def __init__(self): self.bridge = CvBridge() self.model = torch.hub.load('ultralytics/yolov5', 'yolov5s') self.rgb_sub = rospy.Subscriber("/camera/color/image_raw", Image, self.detect_cb) def detect_cb(self, msg): cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8") results = self.model(cv_image) # 添加深度数据融合逻辑 rospy.loginfo(results.pandas().xyxy[0]) if __name__ == '__main__': rospy.init_node('yolo_detector') ObjectDetector() rospy.spin() ``` ### 三、深度数据融合 ```python # 在回调函数中添加深度处理 depth_image = self.bridge.imgmsg_to_cv2(depth_msg, "passthrough") for *xyxy, conf, cls in results.xyxy[0]: center_x = int((xyxy[0]+xyxy[2])/2) center_y = int((xyxy[1]+xyxy[3])/2) distance = depth_image[center_y, center_x] # 单位:毫米 print(f"检测到{self.model.names[int(cls)]},距离:{distance/1000:.2f}米") ``` ### 四、坐标变换 使用TF将检测结果转换到机器人基坐标系: ```python listener = tf.TransformListener() (trans, rot) = listener.lookupTransform('base_link', 'camera_link', rospy.Time(0)) ``` ### 五、示例教程推荐 1. [RealSense官方ROS文档](https://github.com/IntelRealSense/realsense-ros) 2. [YOLOv5ROS集成教程](https://automaticaddison.com/yolov5-object-detection-using-ros-tensorflow-and-pytorch/) 3. [深度数据融合示例](https://github.com/IntelRealSense/realsense-ros/wiki/SLAM-with-D435i)
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值