自然语言推理和数据集

本文介绍了自然语言推理(NLI)任务,它涉及判断文本序列间的逻辑关系,如蕴涵、矛盾和中立。SNLI数据集包含50万个标记的英文句子对,用于研究和训练模型。文章提供了数据读取和处理的方法,以及数据集的基本统计信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言推理和数据集

Natural Language Inference and the Dataset

情绪分析的问题。此任务旨在将单个文本序列分类为预定义的类别,例如一组情感极性。然而,当需要判断一个句子是否可以从另一个句子中推断出来,或者通过识别语义上等价的句子来消除冗余时,知道如何对一个文本序列进行分类是不够的。相反,需要能够对文本序列进行推理。

  1. Natural Language Inference

自然语言推理研究一个假设是否可以从一个前提中推断出来,前提和前提都是文本序列。换句话说,自然语言推理决定了一对文本序列之间的逻辑关系。这种关系通常分为三类:
蕴涵:假设可以从前提中推断出来。

矛盾:假设的否定可以从前提推断出来。

中立:所有其情况。

自然语言推理也被称为识别文本蕴涵任务。例如,下面的一对会被标记为蕴涵,因为假设中的“示爱”可以从前提中的“拥抱”中推断出来。

前提:两个女人互相拥抱。

假设:两个女人在表达爱意。

下面是一个矛盾的例子,因为“运行编码示例”表示“不睡觉”而不是“睡眠”。

前提:一个男人正在运行一个代码示例,该示例来自于深度学习。

假设:这个人正在睡觉。

第三个例子显示了一种中立关系,因为“为演出”的事实不能推断出“著名”和“不出名”。

前提:音乐家在为表演。

假设:音乐家是有名的。

自然语言推理一直是理解自然语言的中心话题。在信息检索、开放领域问答等领域有着广泛的应用。为了研究这个问题,将从研究一个流行的自然语言推理基准数据集开始。

  1. The Stanford Natural Language Inference (SNLI) Dataset

斯坦福自然语言推理(SNLI)语料库是一个50万标记英语句子对【Bowman等人,2015年】。将提取的SNLI数据集下载并存储在路径…/data/SNLI_1.0中。

import collections

from d2l import mxnet as d2l

from mxnet import gluon, np, npx

import os

import re

import zipfile

npx.set_np()

#@save

d2l.DATA_HUB[‘SNLI’] = (

'https://nlp.stanford.edu/projects/snli/snli_1.0.zip',

'9fcde07509c7e87ec61c640c1b2753d9041758e4')

data_dir = d2l.d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值