利用MONAI加速医学影像学的深度学习研究

MONAI是一个基于PyTorch的医疗影像学深度学习框架,旨在加速医学成像的人工智能开发。文章介绍了COPLE-Net和LAMP两个研究案例,展示了MONAI在COVID-19肺炎病灶分割和大型深度网络模型并行方面的应用,证实了MONAI在提高研究效率和性能上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用MONAI加速医学影像学的深度学习研究

Accelerating Deep Learning Research in Medical Imaging Using MONAI

医学开放式人工智能网络(MONAI)是一个免费提供、社区支持、基于Pythorch的医疗影像学深度学习框架。它为开发训练工作流程提供了领域优化的基础功能。

在4月份发布的gtc2020 alpha版本的基础上,MONAI现在发布了0.2版本,为医学成像研究人员提供了新的功能、示例和研究实现,以加快人工智能开发的创新步伐。有关更多信息,请参阅NVIDIA和伦敦国王学院宣布MONAI医疗保健研究开源AI框架。

为什么是MONAI研究?

MONAI research是MONAI代码库中的一个子模块。其目的是展示研究原型的实施和从最新出版的医学影像学与深度学习示范。研究模块由核心开发团队定期审查和维护。根据良好的软件工程实践,从研究子模块中识别出的可重用组件被集成到MONAI核心模块中。

随着MONAI的灵活性和可用性,设想MONAI research是发布研究代码、增加研究影响、促进开放性和可重复性研究的合适场所。像MONAI中的所有其他子模块一样,欢迎以评论、想法和代码的形式发表意见。

在这篇文章中,讨论了目前已经包含在基于MONAI的实现中的研究出版物,这些出版物解决了医学图像分割中的高级研究问题。MONAI不用于临床。

· COPLE-Net: COVID-19 Pneumonia Lesion Segmentation Network

· LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation

COPLE-Net网络:COVID-19肺炎病灶分割网络

CT对19例肺炎病灶的准确诊断和随访具有重要意义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值