
电赛2024年H题智能小车基于MSPM0G3507主控MCU(利用8路灰度加上MPU6050的解决方式)具体项目报告
系统运行由两部分组成:自动行驶小车的无指示线直行控制部分和有指示线弯道行驶的实时转向控制部分,小车的无指示线直行控制部分,由MPU6050六轴传感器获得小车姿态的偏航角,通过获得的实时偏航角,编码器的实际值,构成双反馈串行PID实时监控调制小车实际运行轨迹的目的。小车在有指示线的路段行驶,通过8路灰度,得到小车姿数字量,将得到的数字量进行比例换算得到实际角度偏差,将实际角度偏差进行位置式PID计算,得到小车预期位置和实际位置的差值输出对应的PWM达到实时动态调制车身的目的。方案三:采用导电的塑料电位器。


MCU STM32搭配存储SD NAND(贴片式T卡)于智能皮电手环(Galvanic Skin Response, GSR 手环)的全方位评测
STM32H750 MCU与MKDV4GIL-AST SD NAND存储器的组合为智能穿戴设备提供了高效低功耗解决方案。该方案具有30MB/s读取和20MB/s写入速度,能耗降低30%,使智能手环续航延长至14天。STM32H750基于Cortex-M7内核,支持400MHz主频和多种安全加密算法,MKDV4GIL-AST则提供SMART健康监测功能。二者通过SDIO或SPI接口协同工作,为大规模生产场景下的数据存储需求提供了高性价比选择,显著提升系统响应速度和稳定性。

把“思考”塞进 1 KB:我用纯 C 语言给单片机手搓了一个微型 Transformer 推理引擎
摘要:本文探讨了在64KB SRAM的MCU(如STM32H743)上部署精简Transformer模型的技术方案。通过将6层Transformer压缩至1层(隐藏维度128)、4-bit KV-Cache量化等优化手段,实现了240KB Flash占用和59KB RAM峰值,推理延迟184ms(400MHz Cortex-M7),准确率96.1%。关键创新包括:手工优化矩阵乘(CMSIS-NN)、查表法Softmax/LayerNorm、权重按Tile重排提升Cache命中率(60%→94%)。
