
智能驾驶
文章平均质量分 50
智能驾驶
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
CARLA
Abstract: We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and pr原创 2021-08-09 18:51:01 · 276 阅读 · 0 评论 -
前车碰撞警告(FCW)Forward CollisionWarning with a Single Camera
AbstractThe large number of rear end collisions due to driver inattention has been identified as a major automotive safety issue. Even a short advance warning can significantly reduce the number and severity of the collisions. This paper describes a visi原创 2021-08-09 18:14:34 · 1278 阅读 · 0 评论 -
Apollo概述
Apollo 2.5允许车辆在带有用于障碍物检测的摄像头的地理围栏(geofenced)高速公路上自主行驶。车辆能够保持车道控制、巡航并避免与前方车辆发生碰撞。Apollo 2.5 allows the vehicle to autonomously run on geo-fenced highways with a camera for obstacle detection. Vehicles are able to maintain lane control, cruise and avoid.原创 2021-08-09 17:46:56 · 215 阅读 · 0 评论 -
Lattice - 规划模块 1.采样轨迹 2.计算轨迹cost 3 循环检测筛选轨迹
Lattice算法隶属于规划模块。规划模块以预测模块、Routing模块、高精地图和定位的结果作为输入,通过算法,输出一条平稳、舒适、安全的轨迹,交给控制模块去执行。我们可以看到,规划模块在Apollo中是一个承上启下的重要模块。Apollo中规划模块的工作流程。首先是依据Routing和定位,通过平滑算法,生成一条平滑的参考线(平滑的道路中心线)。再通过规划算法,生成一条符合交规,安全舒适的规划轨迹。那么Lattice算法就是Apollo开源平台中,其中的一种规划算法。Lattice规划算原创 2021-08-09 14:50:07 · 1366 阅读 · 0 评论 -
决策控制方法:sequential 规划、behavior-aware规划、端到端规划
决策控制方法由上至下依次为:·sequential planning、·behavior-aware planning、以及·end-to-end planning。sequential planning属于最传统的方法,感知、决策与控制三个部分层次较为清晰;behavior-aware planning这种方法相比第一种,亮点在于引入人机共驾、车路协同以及车辆对外部动态环境的风险预估;end-to-end planning这种方法基于DL、DRL技术,借助大量的数据做训练,获得从图像等原创 2021-08-09 14:36:44 · 1447 阅读 · 0 评论 -
C++面试题30道
1.new、delete、malloc、free关系delete会调用对象的析构函数,和new对应free只会释放内存,new调用构造函数。malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和转载 2021-08-06 10:32:47 · 264 阅读 · 0 评论 -
人工智能十种“新”数学
十种人工智能“新”数学包括: 1. 泛函分析 2. 群表示论与范畴论 3. 微分几何 4. 代数几何 5. 随机矩阵 6. 最优传输 7. 动力系统与随机分析 8. 统计物理与非线性科学 9. 信息论 10. 博弈论相对于人工智能“旧”数学:巴拉克空间...原创 2021-08-04 18:31:20 · 771 阅读 · 0 评论 -
HOG(方向梯度 直方图(histogram of oriented gradient
HOG(方向梯度 直方图(histogram of oriented gradient) 是计算机视觉中一种重要的图像局部纹 理的 特 征 描 述 子。其 核 心 思 想 为:在 一 幅 图 像 中, 局部目标的表象和形状能够被梯度或边缘的方向密 度分布很好地描述;其本质为梯度的统计信息。而 梯度主要存在于边缘的地方。通过累积计算图片某 一区域中不同方向上梯度的值,得到直方图,以此 表征目标区域。 与其他特征相比,HOG 具备如下 优 点:1)对 图像的几何和光学形变都能保持很好的不变性,这 2种形变只会出原创 2021-07-29 17:39:54 · 119 阅读 · 1 评论 -
基于深度学习的视觉 SLAM 综述
引言(Introduction)同时定位与地图构建(SLAM)是机器人搭载视觉、激光、里程计等传感器,对未知环境构建地 图的同时实现自定位的过程,在机器人自主导航任 务中起着关键作用 [1-4].当前 SLAM 问题的研究手 段主要是通过在机器人本体上安装多类型传感器来 估计机器人本体运动信息和未知环境的特征信息, 利用信息融合实现对机器人位姿的精确估计以及 场景的空间建模.尽管 SLAM 采用的传感器有激 光和视觉等多种类型,但其处理过程一般包含 2 个 部分 [5] (如图 1 所示):前端帧间估计原创 2021-07-29 17:31:14 · 1203 阅读 · 0 评论 -
VIO,visual-inertial odometry)即视觉惯性里程计
VIO 开源框架VIO目前实现比较好的有vinsmono,okvis,MSCKF。前两个是基于非线性优化的方案而且框架比较相似,后者是基于滤波优化的方案,也是Google Tango上使用的方法,MSCKF目前并没有开源,不过宾夕法尼亚的Kumar实验室18年有一个相似的工作,目前已经开源。此外还有ROVIO。值得注意的是,虽然在纯视觉SLAM中,学界已经公认基于非线性优化方法的SLAM方法效果要好于滤波的方法,但在VIO中,非线性优化和滤波方法目前还没有很明显的优劣之分。我的理解是结合相机和IMU两种转载 2021-07-29 17:23:57 · 2223 阅读 · 0 评论 -
SfM(Structure from motion,运动恢复结构,从motion中实现3D重建。也就是从时间系列的2D图像中推算3D信息
SfM(Structure from motion,运动恢复结构) 是一种三维重建的方法,用于从motion中实现3D重建。也就是从时间系列的2D图像中推算3D信息。人的大脑可以从动的物体中取得其三维的信息,是因为大脑在动的2D图像中找到了匹配的地方,即Corresponding area (points)。然后通过匹配点之间的视差得到相对的深度信息,在这一点上,原理和基于Stereo的三维重建相同。SfM的输入是一段motion或者一时间系列的2D图群,如下图所示 [1],这里不需要任何相机的信息原创 2021-07-29 17:19:28 · 3275 阅读 · 0 评论 -
openpilot
openpilotis an open source driver assistance system. Currently, openpilot performs the functions of Adaptive Cruise Control (ACC), Automated Lane Centering (ALC), Forward Collision Warning (FCW前方碰撞警告) and Lane Departure Warning (LDW) for a growing variety.原创 2021-07-29 17:03:47 · 1002 阅读 · 0 评论 -
CVPR2021 自动驾驶运动预测挑战赛Argoverse Motion Forecasting Competition
Challenge OverviewArgoverse™is a dataset of high-definition maps and sensor data from Argo AI. In 2019, we released this collection publicly to aid the research community in making advancements in key perception and forecasting tasks for self-driving te.原创 2021-07-29 16:34:43 · 1559 阅读 · 0 评论 -
ORB feature to FAST,定向快速旋转简报
Compare ORB feature to FAST答案:ORB (Oriented Fast and Rotated Brief ,定向快速旋转简报)的简称,可以用来对图像中的关键点快速创建特征向量,这些特征向量可以用来识别图像中的对象。其中,Fast 和 Brief 分别是特征检测算法和向量创建算法。ORB 首先会从图像中查找特殊区域,称为关键点。关键点即图像中突出的小区域,比如角点,比如它们具有像素值急剧的从浅色变为深色的特征。然后 ORB 会为每个关键点计算相应的特征向量。ORB 算法创原创 2021-07-28 15:43:24 · 412 阅读 · 0 评论