
机器学习指标
文章平均质量分 62
机器学习指标
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
机器学习指标2 micro f1和macro f1
Micro F1更关注整体性能,适用于类别分布相对平衡的情况。Macro F1更关注每个类别的性能,适用于类别分布不平衡的情况,或者当需要评估每个类别的性能时。在实际应用中,根据具体问题和业务需求选择合适的 F1 分数计算方法是很重要的。原创 2024-05-21 11:29:57 · 2281 阅读 · 0 评论 -
机器学习 - 训练 指标解释
因此,在类别不平衡的情况下,AUC-PR通常较低。模型性能的评估:在类别不平衡的情况下,AUC-PR比AUC-ROC更能反映模型在实际应用中的性能。使用适合不平衡数据集的算法:某些机器学习算法,如XGBoost、LightGBM等,具有处理不平衡数据集的能力,可以考虑使用这些算法。使用适合不平衡数据集的评估指标:除了AUC-PR,还可以使用其他适合不平衡数据集的评估指标,如F1分数、马修斯相关系数等。调整类别权重:在训练模型时,可以为不同的类别分配不同的权重,给少数类样本更高的权重,以增加其重要性。原创 2024-03-21 11:43:28 · 660 阅读 · 0 评论 -
简单机器学习评估指标中分类评价指标(acc,recall ,precision,F1,fusion matrix,
既可以兼顾precision又可以兼顾recall。F1_score越高说明precision和recall达到了一个很高的平衡点。Tradeoff 会让准确率和召回率顾此失彼。逻辑回归(模型):输出概率,原创 2023-08-15 09:41:44 · 449 阅读 · 0 评论 -
信息熵与信息差
(Conditional Entropy),顾名思义,是以条件机率�(�|�)定义的典型集的机率大约为1,所以只需要将属于典型集的无记忆�。其直观意义如下:假如接收一段数列{�1,�2,...,��}可以再对联合熵与条件熵的关系做推广,假设现在有�。其中S(X)为热力学熵,H(X)为信息熵,��。在统计物理学中对熵的工作,启发了信息论的熵。互为独立,则�(�,�)=�(�)+�(�)后总讯息量为�(�1)+�(�2|�1)后,总讯息量应为�(�1,...,��),有�(�,�)=�(�|�)�(�)原创 2023-08-10 11:51:12 · 217 阅读 · 0 评论 -
F1分数-F1 Score
精确率(Precision)和召回率(Recall)评估指标,理想情况下做到两个指标都高当然最好,但一般情况下,Precision高,Recall就低,Recall高,Precision就低。而像癌症检测、地震检测、金融欺诈等,则在保证精确率的条件下,尽量提升召回率。引出了一个新的指标F-score,综合考虑Precision和Recall的调和值.所以在实际中常常需要根据具体情况做出取舍,例如一般的搜索情况,在。F1分数可以看作是模型精确率和召回率的一种。,它的最大值是1,最小值是0。原创 2023-05-11 03:41:53 · 657 阅读 · 0 评论 -
PaddlePaddle:Auc源代码
class paddle.metric.Auc[源代码]¶目前只用Python实现Auc,可能速度略慢。该接口计算Auc,在二分类(binary classification)中广泛使用。该接口创建四个局部变量TP:true_positives,TN:true_negatives,判断为负,且实际为负。false_positivesfalse_negatives,用于计算Auc。为了离散化AUC曲线,使用临界值的线性间隔来计算召回率和准确率的值。用false positive的召回值高度计算ROC曲线面积,原创 2022-06-14 16:09:52 · 366 阅读 · 1 评论 -
PR曲线和ROC曲线比较
PR曲线和ROC曲线比较 ROC曲线特点: (1)优点:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。因为TPR聚焦于正例,FPR聚焦于与负例,使其成为一个比较均衡的评估方法。 在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。 (2)缺点:上文提到ROC曲线的优点是不会随着类别分布的改变而改变,但这在某种程度上也是其缺点。因为负例N增加了很多,而曲线却没变,这等于产生原创 2022-06-14 16:05:57 · 916 阅读 · 0 评论 -
MSE和MAE:两种损失函数的性质
两种损失函数的性质异常值MSE对异常值敏感,因为它的惩罚是平方的,所以异常值的loss会非常大。MAE对异常之不敏感,不妨设拟合函数为常数,那么MSE就相当于所有数据的均值(列出loss对c求导即可),而MAE相当于所有数据的中位数,所以会对异常值不敏感。优化效率MAE不可导而且所有的导数的绝对值都相同,优化时无法确定更新速度,MSE可导,有closed-form解,只需要令偏导数为0即可。如何选择如果想要检测异常值则使用MSE,如果想学习一个预测模型则建议使用MAE,或者先进原创 2022-05-30 16:56:46 · 1569 阅读 · 0 评论 -
AUC 随机抽取一个阳性样本和一个阴性样本,分类器正确判断阳性样本的值高于阴性样本之机率
为什么要用AUC 因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。 在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),此时如果用precision/recall等指标的话,数据分布的波动就会出现预测的较大波动 AUC考虑了分类器对于正例和负例的分类能力,在样本不平衡的情况下,依然能够对分类器作出合理的评价 下图是ROC曲线和Precision-Recall曲线的对比,(原创 2021-09-02 14:21:05 · 465 阅读 · 0 评论