
InternVL2书生蒲语多模态大模型/源码解析
文章平均质量分 83
书生蒲语多模态大模型/源码解析
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
InternVL:扩展视觉基础模型并针对通⽤视觉语⾔任务进⾏调整 [论文翻译]
该论文提出了 InternVL,这是一个大规模的视觉语言基础模型,它将一个拥有60 亿参数的视觉编码器与一个大型语言模型(LLM)进行了对齐,从而在广泛的通用视觉语言任务上实现了最先进的性能。80 亿参数的 LLM 中间件语言组件的"粘合剂"层渐进式的图像-文本对齐策略噪声网络数据细粒度数据进行生成学习作为独立的视觉编码器LLM 中间件超越了之前的最先进模型该论文强调了缩小 LLM快速进步与视觉和视觉语言基础模型相对较慢发展之间差距的重要性,并提出 InternVL 作为这一方向的领先解决方案。原创 2024-08-13 21:43:01 · 968 阅读 · 0 评论 -
关于swift deploy和lmdeploy的区别,部署InternVL2-26B
【代码】关于swift deploy和lmdeploy的区别,部署InternVL2-26B。原创 2024-08-08 16:43:17 · 254 阅读 · 0 评论 -
swift 训练InternVL2
【代码】swift 训练InternVL2。原创 2024-08-03 22:16:07 · 447 阅读 · 1 评论 -
InternVL2 Docker 镜像使⽤说明
这部分⽤于告诉 Docker 运⾏的容器可以访问所有可⽤的 GPU。本⽂旨在为⽤⼾提供⼀个⽅便的⽅式来配置所需的 Python 环境,以便运⾏InternVL2。Docker,⽤⼾可以在隔离的容器中轻松设置和管理依赖项,⽆需担⼼与系统环境的冲突或其他依赖问。如果您的容器需要通过代理访问互联⽹,可以在此设置代理地址。⾸先,在有互联⽹连接的机器上构建 Docker 镜像。步骤 1:在本地机器上加载 Docker 镜像。问,⽤于指定要使⽤的 CUDA 设备编号。这是⽤于运⾏容器的 Docker 命令。原创 2024-08-05 20:01:13 · 1163 阅读 · 0 评论 -
InternVL官方微调
下载预训练模型后,准备自定义的SFT(监督微调)数据。创建类似于此示例的JSON 文件。JSON 文件的格式应为:"root"false1"length"},...例子:"root"false1"length"102025对于每种具体的JSONL(如纯文本数据、单图像数据、多图像数据、视频数据)的格式都可以按照本文档提供的描述进行组织。原创 2024-08-06 22:21:33 · 2201 阅读 · 0 评论 -
InternVL源码解析 之训练脚本internvl2_40b_hermes2_yi_34b_dynamic_res_2nd_finetune_full.sh internvl_chat_finet
这是一个用于多模态任务训练的 Bash 脚本。set -xshell 的调试模式集群分区名每个节点的 GPU 数量每个任务的 CPU 核心数每个设备的批次大小TensorFlow 日志级别14-18. 设置输出目录并创建(如果不存在)19-50. 使用srun这个脚本主要用于在一个多节点、多 GPU 的环境中微调一个大型多模态模型(InternVL2-40B)。它使用了 DeepSpeed 进行分布式训练,并采用了许多优化技巧,如梯度检查点、动态图像大小等。原创 2024-08-07 17:22:06 · 770 阅读 · 0 评论 -
InternVL 最佳实践 swift微调
系列模型,支持多轮多图推理,在单轮推理中,图像和文本可以交错,图像的位置需要由输入确定。映射算法对多模态模型不友好,可能导致不同 GPU 卡之间的内存分配不均匀。支持多轮对话,图片支持本地路径或者URL输入,多张图片以逗号','分隔。时出现,因为 modelscope 上的相应模型需要申请流程。您也可以直接输入上述格式,但请确保坐标使用千分之一刻度坐标。数据集中没有标签,则默认将图像放在最后一轮查询的开头。模型支持使用视频数据集进行训练,而无需指定标签。以 作为例子,你也可以通过指定 切换到其他模型。原创 2024-08-03 21:45:39 · 1498 阅读 · 0 评论 -
图像分类的 InternImage github
由于缺乏计算资源,deepspeed 训练脚本目前仅针对前几个 epoch 进行了验证。要将 deepspeed 检查点转换为 pytorch fp32 检查点,您可以使用以下代码片段。中启动训练,如下所示(以小型和大型 GPU 为例)。,并将所有图像移动到此文件夹中标记的子文件夹中。以下是具有 8 个 GPU 的 InternImage-H 的参考 GPU 内存成本。此文件夹包含用于图像分类的 InternImage 的实现。移动到标记的子文件夹。论文结果是使用 中的配置训练的模型获得的。原创 2024-08-01 15:10:26 · 1082 阅读 · 0 评论 -
如何在自定义数据集上微调 InternVL-Chat-V1-2How to Fine-tune InternVL-Chat-V1-2 on a Custom Dataset
为上一步中创建的 JSON 文件的路径。这些 shell 脚本中默认的预训练模型路径是。如果您使用的是 Plus 版本,如何在自定义数据集上微调 InternVL-Chat-V1-2。如果您遇到任何问题,请告诉我,我会更新培训指南以增强其可用性。完整的 LLM 需要 16 个 A100 80G GPU。在开始第二次微调之前,请先下载我们提供的。微调 LoRA 需要 2 个 A100。下载预训练模型后,准备自定义的。2. 准备自定义训练数据。在微调之前,请将 设置。预训练模型进行微调。原创 2024-07-23 20:28:53 · 1000 阅读 · 0 评论 -
InterViT-6B-448px-V1-5 模型卡 InternVL2-40B
其中基础瓦片大小为 448×448,瓦片数量范围为 1 至 12。同时,我们增强了预训练数据集的数据规模、质量和多样性,使得。InterViT-6B-448px-V1-5 模型卡。InternVL-聊天-V1-2-Plus。实习生ViT-6B-448px-V1-5。实习生ViT-6B-448px-V1-2。实习生ViT-6B-448px-V1-0。支持动态分辨率,超强 OCR(🔥新)InternVL-聊天-V1-5。InternVL-聊天-V1-2。InternVL-聊天-V1-1。原创 2024-07-23 17:07:34 · 1213 阅读 · 0 评论 -
InternVL-Chat SFT
我们提供用于多节点多 GPU 训练的 slurm 脚本。您可以使用 32 或 64 个 GPU 来训练此模型。如果您使用 64 个 GPU,训练大约需要 18 小时。来训练 InternVL-Chat-V1-2,总共使用了约 1.2M 个视觉指令调优样本,所有这些样本都是。LLaVA-NeXT 的启发,我们采用了数据高效的 SFT 策略。此文件夹包含 InternVL-Chat 的实现。查看 tensorboard 中的训练日志。下表列出了用于微调的超参数。其次,下载我们使用的所有图像。原创 2024-07-23 20:40:25 · 652 阅读 · 0 评论 -
Nous‑Hermes‑2‑Yi‑34B Intern2-VL 40B语言模型
它是一个 GUI 应用程序,利用带有 llama.cpp 后端的 GGUF 模型,并提供类似于 ChatGPT 的界面来与模型聊天,并开箱即用地支持 ChatML。这是一种比 alpaca 或 sharegpt 更复杂的格式,其中添加了特殊标记来表示任何回合的开始和结束,以及回合的角色。Nous Hermes 2 使用 ChatML 作为提示格式,开辟了一个更加结构化的系统,让 LLM 参与多轮聊天对话。的所有基准测试中都达到了新的高度,并超越了许多流行的微调。到您的提示中,以确保模型继续进行助手响应。原创 2024-07-23 20:18:10 · 793 阅读 · 0 评论 -
InternVL 最佳实践 swift微调
自定义数据集支持json, jsonl样式, 以下是自定义数据集的例子:(支持多轮对话, 图片支持传入本地路径或URL, 多张图片用逗号’,’分割)(支持纯文本数据)InternVL2模型除了以上数据格式外, 还支持多图多轮训练, 使用tag<image>标明图片在对话中的位置, 如果数据集中没有tag<image>, 默认放在最后一轮query的开头或者用表示图像路径和图像位置InternVL2模型支持视频数据集训练, 无需标明tagInternVL2。原创 2024-07-29 16:34:28 · 2514 阅读 · 0 评论 -
从图像到万象,InternVL 2.0 书生·万象多模态大模型发布!
目录收起代码开源/模型使用方法:76B大模型,司南评测优于GPT-4O8B端侧小模型,消费级单卡可部署试用Demo:正文开始!原创 2024-07-23 16:54:22 · 2595 阅读 · 0 评论 -
国产7B大模型InternLM-XComposer媲美GPT-4V | 新增“多图多轮对话、指令生成网页、图文混排”等实用功能!
上图展示了InternetLM-XComposer-2.5(IXC-2.5)在不同领域的基准测试上的性能概述,包括视频基准测试、结构高分辨率基准测试、通用视觉QA基准测试、多真实多图像基准测试和网页制作基准测试。在模型微调阶段,统一动态图像分区策略的最大数量H是24,以处理超大的图像和视频。InternetLM-XComposer-2.5的模型架构主要遵循InternetLM-XComposer2和InternetLMXComposer2-4KHD(为了简单来说,是IXC2和IXC2-4KHD)的设计,原创 2024-07-19 11:31:50 · 1230 阅读 · 0 评论 -
书生蒲语-训练/预训练教程
micro_bsz=1, # packed_length = micro_bsz * SEQ_LEN,为一次处理的 micro_batch 的数据大小,默认值为 1。# content 表示哪些状态会被加载,支持: "model", "sampler", "optimizer", "scheduler", "all"micro_num=1, # micro_num 是指在一次模型参数更新中会处理的 micro_batch 的数目,默认值为 1。原创 2023-09-25 16:39:49 · 273 阅读 · 0 评论 -
书生·浦语-对话-20B 书生大模型
上海人工智能实验室与商汤科技联合香港中文大学和复旦大学正式推出书生·浦语200亿参数模型版本 InternLM-20B ,InternLM-20B 在超过2.3TTokens包含高质量英文、中文和代码的数据上进行预训练,其中 Chat 版本还经过了SFT 和 RLHF 训练,使其能够更好、更安全地满足用户的需求。InternLM 20B 在模型结构上选择了深结构,层数设定为60层,超过常规7B和13B模型所使用的32层或者40层。在参数受限的情况下,提高层数有利于提高模型的综合能力。原创 2023-09-25 16:12:30 · 294 阅读 · 0 评论