
Hadoop
文章平均质量分 63
Hadoop
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
paddle serving
高性能引擎支持:飞桨的 Paddle Inference 原生推理库作为当前 Paddle Serving 唯一支持的后端推理引擎,具备诸多高性能的特性,例如内存/显存复用、算子自动融合、TensorRT 子图以及 Paddle Lite 子图自动调用等功能。Paddle Serving 从客户端请求到服务端计算的整体流程如图 1 所示,整个底层通信都采用了高并发、低延时的 Baidu-RPC 服务,支撑深度学习模型在线部署的整个流程,使其性能进一步提高。...原创 2021-12-20 11:48:18 · 1043 阅读 · 0 评论 -
2021-09-09 Hadoop Hive Spark概览
hadoop首先当然是hadoop,不过hadoop不是一门技术,而是一个大数据框架。它的logo是一只黄色的小象,据说是这个项目的创建者用女儿的玩具命名的。经过了很多年的发展,现在hadoop框架已经非常成熟,衍生出了一个庞大的家族。有多庞大呢,我在google里给大家找了一张图,大家可以看看感受一下,这里面有多少是自己知道的,有多少没听说过。当然对于算法工程师来说,hadoop家族并不需要全部了解,只需要着重关注几个就可以了。hdfs首先是hdfs,hdfs是hadoop框架转载 2021-09-09 17:08:38 · 408 阅读 · 0 评论 -
2021-09-07客户端向 NameNode 请求创建文件,NameNode 根据元数据信息计算出文件的元数 据信息
客户端向 NameNode 请求创建文件,NameNode 根据元数据信息计算出文件的元数 据信息,比如分块大小,块存放的位置等等。NameNode 把这些信息回传给客户端,并 使用租约机制通过心跳包告诉 DataNode 客户端会来存储数据。客户端收到信息之后将 数据分块然后客户端通过管道 pipeline 向 DataNode 传输数据,当数据到达第一个节点之 后继续流向下一个节点,直到数据到达所有的备份节点。客户端为会 pipeline 所有流向 的数据节点保存一个确认队列(ack queue),确保原创 2021-09-07 14:00:04 · 258 阅读 · 0 评论 -
2021-09-07Hadoop运行模式:
2、Hadoop运行模式:单机版:无需任何守护进程,所有的程序都运行在同一个JVM上执行。在独立模式下调试MR程序非常高效方便。所以一般该模式主要是在学习或者开发阶段调试使用 。伪分布式模式:Hadoop守护进程运行在本地机器上,模拟一个小规模的集群,换句话说,可以配置一台机器的Hadoop集群,伪分布式是完全分布式的一个特例。完全分布式模式:Hadoop守护进程运行在一个集群上。3、Hadoop生态圈的组件并做简要描述1)Zookeeper:是一个开源的分布式应用程序协调服务,基于zookeep原创 2021-09-07 11:38:43 · 169 阅读 · 0 评论 -
2021-09-06分布式文件系统—HDFS MapReduce
3.2 分布式文件系统—HDFSHDFS 可以运行在许廉价的服务器上,可伸缩性强,也可以面向海量的客户提供数 据访问的分布式文件系统。另外 HDFS 的备份机制可以确保它的灾难冗余能力,它的设 计原则之一就是:一个集群中有服务器坏掉是一件正常的事情,只需要做好备份。元数 据和数据分离也可以提供高性能的服务。 HDFS 要解决的问题如下:1、存储超大数据文件,这里的文件指的是几百 GB 甚至几百 TB 大小的文件。2、流式数据访问,数据通常是一次写入、多次读取的高效访问模式。 3、运行在普通廉价的原创 2021-09-06 14:36:27 · 498 阅读 · 0 评论 -
hadoop调度器,并简要说明其工作方法?
请列出你所知道的hadoop调度器,并简要说明其工作方法? --1.先进先出调度器(FIFO) --Hadoop 中默认的调度器,也是一种批处理调度器。它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业--2.容量调度器(Capacity Scheduler) --支持多个队列,每个队列可配置一定的资源量,每个队列采用FIFO调度策略,为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。调度时,首先按以下策略选择一个合适队...原创 2021-09-06 14:07:22 · 215 阅读 · 0 评论 -
yarn的介绍:
4、YARN(1)yarn的介绍: MR和Spark作为YARN的应用运行在集群计算层和集群的存储层上的,Yarn整体上属于master/slave模型,主要依赖于三个组件来实现功能,分别是ResourceManager,ApplicationMaster,NodeManager。 1)ResourceManager:管理集群上的资源,包括两部分调度器Scheduler,应用管理ApplicationManager。 a、Scheduler负责各个运行中的应用的资源分配,受到资源容量原创 2021-08-31 17:37:24 · 322 阅读 · 0 评论