
集成学习
文章平均质量分 51
深度学习
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
GBDT,梯度提升决策树
综述GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力较强的算法。 GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类。 GBDT的思想使其具有天然优势可以发现多种有区分性的特征以及特征组合。业界中,Facebook使用其来自动发现原创 2021-10-19 09:50:36 · 54 阅读 · 0 评论 -
GBDT和XGBoost
•第一,GBDT将目标函数泰勒展开到一阶,而xgboost将目标函数泰勒展开到了二阶。保留了更多有关目标函数的信息,对提升效果有帮助。•第二,GBDT是给新的基模型寻找新的拟合标签(前面加法模型的负梯度),而xgboost是给新的基模型寻找新的目标函数(目标函数关于新的基模型的二阶泰勒展开)。•第三,xgboost加入了和叶子权重的L2正则化项,因而有利于模型获得更低的方差。第四,xgboost增加了自动处理缺失值特征的策略。通过把带缺失值样本分别划分到左子树或者右子树,比较两种方案下目标函数的原创 2021-10-19 09:41:09 · 26 阅读 · 0 评论 -
2021-09-10 Bagging[7](并 行)和Boosting[8](串行)是两种常见的集成学习方法
Bagging[7](并 行)和Boosting[8](串行)是两种常见的集成学习方法,这 两者的区别在于集成的方式是并行还是串行。随机森林 算法(Random Forests)[9]是Bagging集成方法里最具有代表性的一个算法,这也是本文重点总结的算法。 随机森林是基于决策树的一种集成学习算法。决 策树是广泛应用的一种树状分类器,在树的每个节点 通过选择最优的分裂特征不停地进行分类,直到达到 建树的停止条件,比如叶节点里的数据都是同一个类 别的。当输入待分类样本时,决策树确定一条由根节 点到叶节点原创 2021-09-10 11:11:10 · 777 阅读 · 0 评论 -
Redis--zset类型操作命令
有序集合类型zset(sorted set )redis 有序集合zset和集合set一样也是string类型元素的集合,且不允许重复的成员。不同的是 zset 的每个元素都会关联一个分数(分数可以重复),redis 通过分数来为集合中 的成员进行从小到大的排序。有序集合类型 zset (sorted set )——基本命令zadd 语法:zadd key score member [score member…] 作用:将一个或多个 member 元素及其 score 值加入到有序...原创 2021-09-01 08:36:16 · 531 阅读 · 0 评论 -
2021-08-30
GBDT(Gradient Boost Decision Tree)是一种常用的非线性模型,基于boosting算法的思想.每次迭代都在减少残差的梯度方向新建立一棵决策树.通过迭代不断提高预测的准确性。由于GBDT能够发现多种有区分性的特征以及特征组合,决策树的路径可以直接作为其他模型的输入特征使用,省去了人工寻找特征、特征组合的步骤。GBDT是决策树的组合模型.使用GBDT构造组合特征是指将GBDT中所有决策树每一个叶子节点作为一个新的特征,因此构造得到的特征数目与GGBDT叶子节点的数目相同,每一个特原创 2021-08-31 18:14:44 · 195 阅读 · 0 评论 -
2021-08-30
正式介绍 首先gbdt 是通过采用加法模型(即基函数的线性组合),以及不断减小训练过程产生的残差来达到将数据分类或者回归的算法。gbdt通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差来不断提高最终分类器的精度,(此处是可以证明的)。 弱分类器一般会选择为CART TREE(也就是分类回归树)。由于上述高偏差和简单的要求每个分类回归树的深度不会很深。最...原创 2021-08-30 10:38:59 · 152 阅读 · 0 评论 -
3.1 广义线性模型 And XGBoost
3.1 广义线性模型3.1.1 模型来源 在广义线性模型中,最常用的有六种,由于数据属性原因,在这里我们只讨 论 Logistic 模型、Probit 模型与泊松分布对数线性模型.在多数研究中,研究者 经常会碰到定性变量,如是否购买,是否离职,性别,为哪个候选人投票,每个 人的职业等等,在这一类不可忽略的变量影响下,研究人员希望能把这一变量加 入到模型当中,并且让结果以一个概率的形式表现出来,从而表达一个事件的可 能性,从而进行预判.当我们所要研究预测的变量被多个变量所影响,...原创 2021-08-20 17:39:45 · 345 阅读 · 0 评论