
transformers源码解析
文章平均质量分 84
transformers源码解析
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
[transformers源码解析]transformers/processing_utils.py定义ProcessorMixin(PushToHubMixin)类
在回调函数SaveProcessorCallback中传递processor""""""else:else:"""Returns:"""output = {k: v以下是类的逐行解释:python复制""""""类是一个混入类,用于为所有处理器类提供保存/加载功能。它继承自,这是一个可能与推送代码到某个集线器(如模型仓库)相关的混入类。python复制attributes列表定义了该和tokenizer。python复制这三行代码定义了。原创 2024-07-06 15:55:26 · 1325 阅读 · 0 评论 -
transformers4.42.4 torch2.3.1 支持flash Attention2,比flash Attention快一倍。 24年7月
如果是清华源,缓存目录不是pip目录。原创 2024-07-16 17:13:56 · 437 阅读 · 0 评论 -
transformers/tokenization_utils_base.py> PreTrainedTokenizerBase>from_pretrained[transformers源码解析]
如果为 `True`,将使用运行 `huggingface-cli login` 时生成的令牌(存储在 `~/.huggingface` 中)。可以用于设置特殊标记,如 `bos_token`、`eos_token`、`unk_token`、- 一个字符串,预定义分词器的 *model id*,托管在 huggingface.co 上的模型库中。原创 2024-07-18 14:11:54 · 1055 阅读 · 0 评论 -
transformers/src/transformers/deepspeed.py [transformer源码解析]
用于告诉静态代码分析工具(如flake8)DeepSpeed是否可用的函数。载DeepSpeed检查点的函数。DeepSpeed集成的配置类。明接下来的导入是为了向后兼容。DeepSpeed的配置类。函数向用户发出警告,告知。,表示未来会发生的事情。子模块中导入多个对象。,确保所有对象都能在。原创 2024-07-10 00:07:50 · 961 阅读 · 0 评论 -
transformers deepspeed集成文档
DeepSpeed由零冗余优化器 (ZeRO) 提供支持,是一个用于训练和将超大模型拟合到 GPU上的优化库。它分为多个 ZeRO 阶段,每个阶段通过对优化器状态梯度、参数进行分区以及启用到 CPU 或NVMe 的卸载来逐步节省更多 GPU 内存。DeepSpeed 与Trainer 类集成,设置都会自动为您完成。但是,如果您想在没有情况下使用 DeepSpeed ,Transformers 提供了一个类。在指南中了解有关将 DeepSpeed 与结合使用的更多信息。原创 2024-07-08 10:42:14 · 1031 阅读 · 0 评论 -
[transformers源码解析]transformers/data/data_collator.py 数据整理器
这种数据整理器在语言模型训练中特别有用,确保模型能够处理不同长度的输入,并在使用掩码语言模型时正确生成训练所需的掩码数据。类主要用于在语言模型训练中处理数据,特别是用于掩码语言模型(MLM)任务。方法编译为 TensorFlow 函数。TensorFlow 的实验性编译。np"、"pt" 或 "tf。掩码概率,默认值为 0.15。语言模型的数据整理器。序列填充到该值的倍数。原创 2024-07-06 12:16:06 · 916 阅读 · 0 评论 -
大模型底层transformers源码解析(二)之 TrainingAugumentes实例,/src/transformers/training_args.py
Poe是用于控制训练循环的参数类,它通常用于 Hugging Face Transformers 库中的示例脚本。原创 2024-04-18 11:12:33 · 1055 阅读 · 0 评论 -
大模型底层 transformers源码解析之trainer.py
我会根据你提供的trainer.py源代码,用python的Graph包画出流程图,并着重介绍train()方法。- 将 inputs 通过 self._prepare_inputs 方法处理后传给 self.training_step。- 调用 optimizer.step() 和 lr_scheduler.step() 进行参数更新。计算总共需要训练的步数 max_steps 和 num_train_epochs。- 每 args.logging_steps 个步骤打印训练日志。原创 2024-04-17 17:32:46 · 3896 阅读 · 2 评论 -
深度学习优化器SGD源码解析:tf/pytorch
wwithgradientgwhenmomentumis 0:新参数 = 旧参数 - 学习率*梯度momentumWhen。原创 2023-09-24 23:29:01 · 255 阅读 · 0 评论 -
Baichuan2优化器,从SGD到Adam到AdamW
这样的方法在其他的优化器中或许有效,但会因为 Adam 中自适应学习率的存在而对使用 Adam 优化器的模型失效,具体分析可见fastai的这篇文章:AdamW and Super-convergence is now the fastest way to train neural nets。此外,为避免每次梯度更新时都独立计算梯度,导致梯度方向持续变化,Momentum 将上一轮梯度值加入到当前梯度的计算中,通过某种权重对两者加权求和,获得当前批次参数更新的更新值。但是mt��的计算有上面两种,都可以。原创 2023-09-24 23:01:42 · 340 阅读 · 0 评论 -
Transformer和self Atten 面试1
自Attention机制提出后,加入attention的Seq2seq模型在各个任务上都有了提升,所以现在的seq2seq模型指的都是结合rnn和attention的模型,具体原理可以参考传送门的文章。之后google又提出了解决sequence to sequence问题的transformer模型,用全attention的结构代替了lstm,在翻译任务上取得了更好的成绩。原创 2023-09-24 22:16:15 · 166 阅读 · 0 评论 -
百面大模型:Transformer参数量计算
词向量参数(包括layernorm) + 12 * (Multi-Heads参数 + 全连接层参数 + layernorm参数)= (30522+512 + 2)* 768 + 768 * 2 + 12 * (768 * 768 / 12 * 3 * 12 + 768 * 768 + 768 * 3072 * 2 + 768 * 2 * 2) = 108808704.0 ≈ 110M。因为在输入单头head时,对QKV的向量均进行了不同的线性变换,引入了三个参数,W1,W2,W3。原创 2023-09-24 00:58:21 · 862 阅读 · 0 评论 -
大模型中Transformer 模型的基础演算《Scaling Laws for Neural Language Models》
EleutherAI 的工程师们经常使用上述启发式方法规划高效的模型训练以及调试分布式运行。我们希望澄清这些经常被忽视的实现细节。其他人都在看。原创 2023-09-21 19:25:56 · 858 阅读 · 0 评论 -
注意力机制和 Transformer (Attention and Transformer)
Self-Attention 和 Transformer 自从问世就成为了自然语言处理领域的新星. 得益于全局的注意力机制和并行化的训练, 基于 Transformer 的自然语言模型能够方便的编码的长距离依赖关系, 同时在大规模自然语言数据集上并行训练成为可能.原创 2023-09-21 14:40:35 · 144 阅读 · 0 评论 -
transformer详解
对于我们来说能很简单的判断出来,但是对于机器来说,是很难判断的,尤其是相对于传统seq2seq模型。两句话在单词 it 之前的内容是一样的,传统seq2seq模型encoder的顺序输入导致模型无法区分这种差别。在输入序列比较长的时候,这样做显然会损失Encoder端的很多信息,而且这样一股脑的把该固定向量送入Decoder端,Decoder端不能够关注到其想要关注的信息。Encoder层和Decoder层分别由6个相同的encoder和decoder堆叠而成,模型架构更加复杂。压缩到一个固定长度的向量。原创 2023-09-21 14:35:02 · 141 阅读 · 0 评论 -
transformers源码解析:transformers/src/transformers/models/xlm/modeling_xlm.py 多头注意力机制
这段代码结束时,我们得到了为多头自注意力计算准备好的 Query、Key 和 Value。这是多头注意力机制的准备部分,后续的代码可能会涉及到实际的点积注意力计算和权重的应用。14.- 24. 在此方法中,它找到了要剪枝的头部和相关的索引,并对四个线性层进行了剪枝。然后更新了模型参数。值,为 Query、Key 和 Value 计算对应的变换。,用于改变输入的形状,从而适应多头注意力的计算。26.- 29. 提取输入的形状和相关参数。39.- 45. 根据输入和可选的。注意力层分配一个唯一的ID。原创 2023-09-21 13:51:36 · 329 阅读 · 0 评论