
图神经源码解析
文章平均质量分 84
# 图神经源码解析
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
[GCT源码解析与对比分析]Graph Convolutional Transformer tf vs Pytorch version
特征之间的条件概率。非常抱歉,我的表述有误。但两者的宗旨是一致的,即都是为了把外部的医疗领域知识,以先验条件概率的形式引入到模型中,来指导模型关注诊断-医嘱之间的关联性。总之,GCT利用掩码矩阵排除了EHR图中不可能存在的边,并利用从数据中计算的条件概率作为图结构的先验,通过与自注意力机制相结合,引导模型去学习EHR数据的隐含结构,从而更好地表示EHR数据。(1) 对所有的诊断代码d,治疗代码m和检验代码r,从所有的就诊记录中计算它们的条件概率p(m|d), p(d|m), p(r|m)和p(m|r)。原创 2024-03-19 09:46:23 · 813 阅读 · 0 评论 -
ICLR 2024-GraphCare图谱论文 逐行代码解释
总的来说,这段代码的主要功能是遍历一个字典,根据字典中的键值对生成内容,并将生成的内容写入到对应的文件中。你能重写以上代码,把正在读取和写入的文件做一个print,监控当前读取或写入的是哪一个文件,以及写入了哪些内容。所以您说得对,对于已存在的文件,这段代码实际上是先读取文件原内容,然后在其基础上追加新内容,覆盖掉了原文件。如果文件存在,它会读取文件内容,并根据文件内容的行数决定是否调用。根据代码逻辑,读取的文件和写入的文件实际上是同一个文件。中的每个键值对,并根据键的值生成对应的文件名,将内容写入到。原创 2024-03-14 10:27:14 · 398 阅读 · 0 评论