
大模型社交情感陪伴角色扮演
文章平均质量分 92
大模型社交情感陪伴角色扮演、GPT大模型情感计算
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
为什么说「AI 陪伴」的需求潜力低?
但是从表达风格判断,这些用户的平均年龄可能较低,大概是未成年或者在校大学生,还没有开始工作赚钱,虽然热情高,但持续消费的能力并不高。有的向游戏靠拢,通过对话交互建立用户和 AI 的情感连接,再通过类似游戏抽道具的形式促使用户为喜爱的智能体抽卡花钱,从而形成交易。看了看用户声音,发现付费的一大原因竟然是:“支持/赞助一下平台”,虽然这也反映了 C.ai 对年轻一代的号召力,但现。虽然我是一个 AI 聊天爱好者,但根据我的亲身体验,我发现自己在工作日主要聊天的对象是全能型 AI 助手,比。(包括工作日下班后)原创 2024-08-07 13:51:50 · 1093 阅读 · 0 评论 -
NSFW的AI情感陪伴类在线工具如何做好SEO?
NSFW 是 "Not Safe For Work" 的缩写,意思是“不适合在工作场所浏览”。它通常用于标记包含以下内容的网络内容:色情内容:任何具有性暗示或露骨色情的内容。暴力内容:包含血腥、暴力或令人不安的场景。冒犯性内容:可能被认为是冒犯性的内容,例如仇恨言论、歧视或亵渎。原创 2024-12-20 16:13:43 · 5260 阅读 · 0 评论 -
为什么AI陪伴产品都想抄星野?
以下文章来源于Super黄的念想 ,作者Super黄最近两周见了小20个创业者,基本在聊到AI陪伴类产品时,每个人都会问我,你写Character.ai很好,那你怎么看星野、Talkie?会从这三个部分展开:产品框架与分析用户洞察与定位商业模式与创新1. 星野成功的关键在于利用多模态技术,打造沉浸式的AI虚拟社交体验,抓住了以国产乙女游戏用户群为核心的市场需求。2. 星野的商业收入并不是北极星指标。3.,需要具备独特的技术实力和用户洞察。原创 2023-11-28 06:59:25 · 5248 阅读 · 0 评论 -
AI陪伴冰火两重天:头部固化,海内外天差地别 | 量子位智库月报
猫箱持续加速新增,10月新增下载量约170万,在AI产品APP端中位列第六,成为唯一进入月新增下载量Top 10的AI陪伴产品。量子位智库以2024年10月为统计区间,统计了全国AI产品APP端的多项数据,我们发现,星野、猫箱、X Eva等AI陪伴头部产品的数据表现未达顶尖,数据表现均不平衡。共8款产品进入AI APP三日留存率Top 50,17款产品进入Top 100,但对于强调高互动高粘性的陪伴及娱乐领域而言,这一整体数据表现并不乐观。,同样也会对具体的产品逻辑,如互动场景和情感表达方式产生重大影响。原创 2024-11-16 13:35:09 · 773 阅读 · 0 评论 -
clone-voice:一键克隆声音,开源AI技术让声音创作更便捷、更个性化
原创 小兵 小兵的AI视界 2024年12月03日 07:01 广东在当今科技飞速发展的时代,声音克隆技术作为人工智能领域的一项重要成果,正逐渐走进我们的生活。今天,就让我们一同深入了解一款备受瞩目的声音克隆工具——clone-voice。clone-voice是一款免费开源的声音克隆工具,它凭借先进的人工智能技术,能够分析和模拟人类声音的特征,从而实现高质量的声音克隆. 只需提供一段简短的音频样本,它就可以根据该样本生成与原始声音极其相似的克隆声音,并且支持多种语言,目前包括中文、英文、日语、韩语等,甚至原创 2024-12-03 10:59:36 · 1541 阅读 · 0 评论 -
Chat凉宫春日 Chat-Haruhi-Suzumiya 大模型个性化 人格化
是模仿凉宫春日等一系列动漫人物,使用近似语气、个性和剧情聊天的语言模型,本项目由李鲁鲁,冷子昂,闫晨曦,封小洋,scixing,沈骏一,Aria Fei, 米唯实, 吴平宇, 贾曜恺等开发。本项目是一个,本项目中的代码和工具,也支持其他动漫人物的建立。目前初步支持凉宫春日、李云龙、于谦和神里绫华,正在增加更多角色。本项目的核心思想是在prompt构造的时候利用,对经典剧情进行了搜索,作为Fewshot(或者说更接近CoT)的构造标准。Chat凉宫春日是。原创 2023-08-01 15:23:22 · 974 阅读 · 0 评论 -
个性化大语言模型LLM的最全综述
个性化LLM:综述。原创 2025-01-23 14:51:29 · 1142 阅读 · 0 评论 -
粗看最近爆火的mem0个性化轻量级框架:兼谈多模态数据的tokenizer
本文主要介绍了两件事,一个是mem0,类似于agent,一个是不同模态的tokenizer,这些都是多模态的基础,感兴趣的可以多看看。原创 2024-07-23 20:08:36 · 1064 阅读 · 0 评论 -
斯坦福大学:使用多智能体强化学习训练社交推理语言模型
🌟 概述:本文提出了一种新颖的方法,通过强化学习技术训练语言模型,以便在“Among Us”等多智能体社交推理游戏中实现有效沟通。这种方法增强了智能体的表达和倾听能力,而无需依赖大量的人类沟通数据,从而显著提高了船员的胜率。传统方法通常依赖大量人类沟通数据进行训练,这在许多场景中是不切实际的,尤其是在动态和对抗性环境下,如社交推理游戏。智能体在可见性受限的环境中操作,这使得收集关于其他智能体的行动和身份的完整信息变得困难。目标是训练语言模型,使其能够有效地沟通并推断其他智能体的身份信息。原创 2025-02-12 14:44:29 · 662 阅读 · 0 评论 -
第四章 心理咨询聊天机器人响应体贴度检测
锐”14158 条,“中性”14132 条,“略微体贴”14026 条,“体贴”13655 条。中性:-1、0 或 1 分,略微尖锐:-2 或-3 分,尖锐:-4 或-5 分。“中性”6149 对,“略微体贴”6097 对,“体贴”6159 对。然后我们将所有分数相加,定义 5 个等级:体贴:4 或 5 分,略微体贴:2 或 3 分,集型或稀疏型,对应的典型模型包括 SGNS[75]和 PPMI[76]等。模型架构如图 4.1 所示。其中,𝑦(3)中的第 k 个元素是𝑦𝑖(2)中第 k 个元素的最大值。原创 2023-08-08 10:20:41 · 236 阅读 · 0 评论