
浪潮源大模型Yuan-LLM
文章平均质量分 92
浪潮源大模型Yuan-LLM
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
源大模型Yuan2.0-M32/vllm/yuan_openai_api_server.py 源码解析之vllm推理服务
这段代码读取一个 JSONL 文件中的每一行,提取prompt字段,然后使用 vllm 部署的 Yuan API 发送请求,生成文本后打印结果。代码目前设置为仅处理文件中的第一行。原创 2024-07-11 16:46:50 · 979 阅读 · 0 评论 -
YUAN2.0-M32:专家与注意力路由器的混合体[论文翻译]
袁2.0-M32:专家与注意力路由器的混合体吴少华*、罗建刚、陈曦、李玲君、赵旭东、佟宇、汪超、、、乔、何、张泽如、孙泽宇、毛、IEIT系统摘要元2.0-M32的基础架构与元2.0相似,使用混合专家架构,有32个专家,其中2个专家是激活active的。提出了一种新的路由网络&注意力路由,并采用它来更有效地选择专家,与传统的路由网络模型相比,提高了准确性。袁2.0-M32从零开始用2000B的令牌进行训练,训练计算消耗仅为同参数规模下密集模型的9.25%。袁2.0-M32展示了在原创 2024-07-11 15:30:15 · 426 阅读 · 0 评论 -
Yuan-2.0M32 推理脚本 与vllm加速
这个脚本通过torchrun启动了一个分布式推理服务器,用于运行 "Yuan-2.1B" 模型。脚本设置了各种模型参数、分布式训练配置以及推理服务器的相关配置。脚本中的关键配置包括指定使用的 GPU 设备、设置 NCCL 超时时间、定义GPT 模型参数、指定 Tokenizer 类型和路径、以及加载模型检查点等。原创 2024-07-11 14:13:39 · 1770 阅读 · 0 评论 -
Yuan2.0-M32:搭载注意力路由器的专家混合模型
Yuan2.0-M32 是一个包含32位专家的混合专家(MoE)语言模型,其中2位处于活跃状态。提出了一种新型路由网络——注意力路由器,并已被采纳用于更高效的专家选择,相较于使用传统路由网络的模型,其准确度提升了3.8%。Yuan2.0-M32 从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。原创 2024-07-10 11:31:44 · 1009 阅读 · 0 评论 -
上新!家族迎来新成员——源2.0-M32,算力消耗仅为LLaMA3的1/19
大幅提升了模型算力效率,在实现与业界领先开源大模型性能相当的同时,显著降低了在模型训练、微调和推理所需的算力开销。结合高效的数据清洗流程,满足大模型训练“丰富性、全面性、高质量”的数据集需求。源2.0-M32是浪潮信息在大模型领域持续耕耘的最新探索成果,通过在算法、数据、算力等方面的全面创新,M32不仅可以提供与业界领先开源大模型相当的性能,更可以大幅降低大模型所需算力消耗。基于在算法、数据和算力方面全面创新,源2.0-M32的性能得以大幅提升,在多个业界主流的评测任务中,展示出了较为先进的能力表现,原创 2024-07-10 11:39:27 · 926 阅读 · 0 评论 -
源2.0 M32大模型 github项目
👾• 🤗• 💬• 📎。原创 2024-07-10 11:41:43 · 915 阅读 · 0 评论