
LlaMa-Factory源码解析
文章平均质量分 88
LlaMa-Factory源码解析
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
llamafactory/model/loader.py [源码解析]
它处理了可能的错误,添加了新的特殊token(如果有的话),并可能对tokenizer进行了一些自定义修改。总的来说,这段代码主要处理了多模态模型的加载过程,特别是处理视觉输入的情况。代码中提到的BUAADreamer确实与您提供的URL内容相符,显示了代码与特定模型仓库的关联。如果加载处理器失败,代码抛出一个ValueError,提示用户这个多模态LLM不被支持,并建议下载LLaVA-1.5或Yi-VL模型。的参数,并返回一个字典(键为字符串,值为任意类型)。这是函数的文档字符串,描述了函数的功能。原创 2024-07-18 20:30:58 · 1044 阅读 · 0 评论 -
llamafactory/data/formatter.py [源码解析]
方法来用实际值替换这些占位符。这种formatter可能用于生成结构化的文本,如聊天模板或其他需要动态内容填充的场景。类用于处理包含占位符的字符串模板。它确保模板中至少有一个占位符,并提供了一个。如果slot既不是字符串也不是字典或集合,抛出。它使用正则表达式来查找这种模式。(这可能是在其他地方定义的类型。如果没有找到占位符,抛出一个。自动生成一些常用的方法,如。中的字符串是否包含占位符。如果值不是字符串,抛出。将处理后的字符串添加到。这是一个特殊方法,在。对象初始化后自动调用。原创 2024-07-18 21:04:35 · 540 阅读 · 0 评论 -
LLamafactory用作Formatter的方法Qwen/lib/python3.12/abc.py
这个abc.py模块主要用于定义和管理抽象基类(ABCs)和抽象方法。和类这两个类是装饰器,用于标记静态方法和属性为抽象的。这些装饰器已经被废弃,建议改用和的组合。ABCMeta元类这个元类用于定义抽象基类。使用这个元类创建的类可以包含抽象方法,强制子类实现这些方法。包含一些用于管理和调试的方法,如register和。函数这个函数用于重新计算抽象类的抽象方法集合。如果类在创建后实现了一个抽象方法,或者添加了新的抽象方法,需要调用这个函数来更新抽象方法集合。ABC类这是一个。原创 2024-07-19 10:23:55 · 995 阅读 · 0 评论 -
LLaMA-Factory/src/llamafactory/hparams/parser.py源码解析
这段代码定义了一些函数,用于解析不同任务(训练、推理、评估)的参数,并进行必要的参数检查。它们使用了来解析参数定义,并通过函数来实际解析传入的参数字典。函数还包含了对。原创 2024-07-03 14:19:49 · 806 阅读 · 0 评论 -
LLaMA-Factory/scripts/length_cdf.py 源码解析
这段代码的主要功能是计算数据集样本长度的累积分布函数(CDF),并打印每个长度区间的累积计数和累积概率。从命令行参数获取模型和数据集的相关参数。加载分词器和数据集。统计样本长度的分布。计算并打印累积分布。原创 2024-07-02 19:59:16 · 1352 阅读 · 0 评论 -
[llama factory源码解析.回调函数]src >llamafactory >train >callbacks.py
python复制r""""""类定义继承自,用于在训练开始时转换 PiSSA 适配器。文档字符串:描述了该类的功能,即将 PiSSA 适配器转换为普通适配器的回调。类在训练结束时保存处理器。类在训练开始时将 PiSSA 适配器转换为普通适配器并保存初始适配器。这两个回调类通过在训练过程中的不同时间点执行自定义逻辑,增强了训练流程的灵活性和功能。r""""""继续逐行解释上述代码的后续部分,这是类中的方法的实现。python复制r""""""方法定义方法在训练结束时被调用。参数args。原创 2024-07-06 14:23:03 · 833 阅读 · 0 评论 -
[arxiv论文解读]LlamaFactory:100+语言模型统一高效微调
有效的微调对于使大语言模型适应下游任务至关重要。然而,在不同的模型上实现这些方法需要付出很大的努力。我们提出了LlamaFactory,一个集成了一套尖端高效训练方法的统一框架。它允许用户通过内置的Web UI LlamaBoard灵活定制100+大语言模型的微调,而无需编码。我们凭经验验证了我们的框架在语言建模和文本生成任务上的效率和有效性。它已在发布,并已获得超过 13,000 个 star 和 1,600 个分叉。LlamaFactory:100+语言模型统一高效微调。原创 2024-05-22 23:06:14 · 1757 阅读 · 0 评论 -
源码解析RHLF:LLaMA-Factory/src/llamafactory/hparams/finetuning_args.py
20 强调了在强化学习阶段,用到的奖励模型和价值模型(critic model)都使用同一个模型初始化,因此在训练奖励模型的过程中,也是在训练价值模型。不得不佩服作者构思的巧妙,通过求导,作者捕捉到了”暗含“的 reward —— �(�^�(�,��)−�^�(�,��)) ,作者在论文里说到,当我们在让 loss 降低的过程中,这个 reward 也会变小(可以用来做 rejected_rewards)。:根据评估结果,可能需要回到步骤3或4,对奖励模型的结构或训练数据进行调整,以改进模型的性能。原创 2024-05-26 00:10:59 · 971 阅读 · 0 评论 -
Llama-Factory 简介 二, 脚本详解 LLaMA-Factory/src/train_bash.py LLaMA-Factory/src/llmtuner/train/pt/workfl
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练。│ ├── pretrain.sh: 基于 LoRA 进行增量预训练。│ ├── reward.sh: 基于 LoRA 进行奖励模型训练。│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练。│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练。│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练。原创 2024-04-17 15:36:07 · 2419 阅读 · 0 评论 -
源码解析LLaMA-Factory/src/llmtuner/data/template.py + Qwen模板
【代码】源码解析LLaMA-Factory>src >llmtuner /data / template.py。原创 2024-07-02 21:00:37 · 1769 阅读 · 0 评论 -
[llamafactory预训练源码解析trainer]src >llamafactory >train >pt>trainer.py CustomTrainer 类通过添加自定义回调、优化器和调度器
的功能扩展,使其更适合特定的微调需求。目的是创建一个学习率调度器。绑定旧版的梯度裁剪函数。原创 2024-07-06 11:48:32 · 446 阅读 · 0 评论 -
llama factory 增量预训练代码解析 & .yaml文件传参和sh的不同 examples/train_lora/llama3_lora_pretrain.yaml
通过 YAML 文件传参,配置项得到更清晰的分类和管理,使得整个训练流程的设置更加简洁明了。YAML 文件的层次结构使得配置文件易于阅读和维护,并且便于在不同训练任务之间复用。相比之下,使用.sh脚本传参虽然直观,但在参数较多时容易变得杂乱且难以管理。YAML 文件更适合复杂配置的场景,特别是在需要频繁调整和复用配置的情况下。原创 2024-07-03 16:17:47 · 2734 阅读 · 1 评论 -
Llama-Factory简介 github介绍页
可选的额外依赖项:deepspeed、metrics、unsloth、galore、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality。[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。如果您感兴趣请关注我们的。原创 2024-04-17 14:54:56 · 945 阅读 · 0 评论 -
针对 Yi 6B 和 34B 进行微调代码 + lora微调 llama factory
对于 Yi-34B 模型,由于使用零卸载技术会占用大量 CPU 内存,请注意限制 34B 微调训练中的 GPU 数量。用于微调 34B 模型的典型硬件设置是一个具有 8GPUS 的节点(通过 CUDA_VISIBLE_DEVICES=0,1,2,3 限制运行时为 4 个),每个 GPU 内存大于 80GB,总 CPU 内存大于 900GB。对于Yi-6B基础模型,设置training_debug_steps=20和num_train_epochs=4可以输出聊天模型,大概需要20分钟。原创 2024-06-28 15:23:49 · 1037 阅读 · 0 评论 -
源码解析:BreadcrumbsLLaMA-Factory/src/llamafactory/train/rm/workflow.py
python复制这是run_rm函数的定义。model_args:与模型相关的配置。data_args:与数据处理相关的配置。:训练特定的参数,这里是针对序列到序列模型的。:微调模型的特定参数。callbacks:在训练过程中调用的回调函数列表,可以在训练循环的不同阶段修改行为。原创 2024-05-26 19:06:22 · 793 阅读 · 0 评论 -
LlaMa-Factory源码解析之预训练LLaMA-Factory/src/llamafactory/train/pt/workflow.py -> run_pt()
python复制):run_pt此函数负责语言模型的预训练流程。它接受配置和参数,用于指定模型、数据、训练和微调的参数。callbacks可选的回调函数列表,可以用于训练过程中的自定义操作(例如,日志记录、保存检查点)。原创 2024-04-17 16:49:13 · 1235 阅读 · 0 评论 -
LlaMa-Factory源码解析之 setup.py 24.7月最新版entry_points={“console_scripts“: [“llamafactory-cli
整体来看,这段代码是一个典型的Python安装脚本,用于设置和安装一个专注于LLM微调的Python库。它通过定义函数来动态获取版本号和依赖,通过。,该库专注于大型语言模型(LLM)的微调。这段代码是一个典型的Python项目的安装脚本,采用了。判断是否直接运行该脚本。如果是直接运行,那么将执行。自动发现项目中的所有Python包。和安装Python包。函数,配置了包的各种属性,如包名。函数来配置包的安装和元信息。原创 2024-04-17 15:40:33 · 487 阅读 · 2 评论