
AI与机器学习理论
文章平均质量分 72
机器学习
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
机器学习指标2 micro f1和macro f1
Micro F1更关注整体性能,适用于类别分布相对平衡的情况。Macro F1更关注每个类别的性能,适用于类别分布不平衡的情况,或者当需要评估每个类别的性能时。在实际应用中,根据具体问题和业务需求选择合适的 F1 分数计算方法是很重要的。原创 2024-05-21 11:29:57 · 2281 阅读 · 0 评论 -
机器学习 - 训练 指标解释
因此,在类别不平衡的情况下,AUC-PR通常较低。模型性能的评估:在类别不平衡的情况下,AUC-PR比AUC-ROC更能反映模型在实际应用中的性能。使用适合不平衡数据集的算法:某些机器学习算法,如XGBoost、LightGBM等,具有处理不平衡数据集的能力,可以考虑使用这些算法。使用适合不平衡数据集的评估指标:除了AUC-PR,还可以使用其他适合不平衡数据集的评估指标,如F1分数、马修斯相关系数等。调整类别权重:在训练模型时,可以为不同的类别分配不同的权重,给少数类样本更高的权重,以增加其重要性。原创 2024-03-21 11:43:28 · 660 阅读 · 0 评论 -
深度学习优化器SGD源码解析:tf/pytorch
wwithgradientgwhenmomentumis 0:新参数 = 旧参数 - 学习率*梯度momentumWhen。原创 2023-09-24 23:29:01 · 255 阅读 · 0 评论 -
信息熵与信息差
(Conditional Entropy),顾名思义,是以条件机率�(�|�)定义的典型集的机率大约为1,所以只需要将属于典型集的无记忆�。其直观意义如下:假如接收一段数列{�1,�2,...,��}可以再对联合熵与条件熵的关系做推广,假设现在有�。其中S(X)为热力学熵,H(X)为信息熵,��。在统计物理学中对熵的工作,启发了信息论的熵。互为独立,则�(�,�)=�(�)+�(�)后总讯息量为�(�1)+�(�2|�1)后,总讯息量应为�(�1,...,��),有�(�,�)=�(�|�)�(�)原创 2023-08-10 11:51:12 · 217 阅读 · 0 评论 -
数字货币价格预测 -- 线性归回
import pandas as pdimport numpy as npfrom sklearn import datasets, linear_modelfrom sklearn.metrics import accuracy_scoreimport matplotlib.pyplot as pltdf = pd.read_csv("bitcoin_price.csv")msk = np.random.rand(len(df)) < 0.8X = df["Open"...原创 2022-05-16 00:07:42 · 533 阅读 · 0 评论 -
KDD18 DIN Deep Interest Network for Click-Through Rate Prediction
注意力机制顾名思义,就是模型在预测的时候,对用户不同行为的注意力是不一样的,“相关”的行为历史看重一些,“不相关”的历史甚至可以忽略。那么这样的思想反应到模型中也是直观的。上式中,是用户的embedding向量,是候选广告商品的embedding向量,是用户u的第i次行为的embedding向量,因为这里用户的行为就是浏览商品或店铺,所以行为的embedding的向量就是那次浏览的商品或店铺的embedding向量。ABSTRACTClick-through rate pr...原创 2021-08-13 14:22:10 · 227 阅读 · 0 评论 -
首届电子商务AI算法大赛 Organized by automlai
Quick Start可以尝试以下开源自动机器学习算法包 获取baseline效果。效果对比:--- AutoX AutoGluon H2o mse 1.1426 1.9466 1.1927 初赛、复赛线上评分排名规则初赛、复赛线上采用Mean squared error(MSE)进行评分排名,MSE越小排名越高,其中,MSE的定义如下:其中,ytrue是真实销量,yPredict是预测销量,nsample...原创 2021-08-11 14:51:52 · 335 阅读 · 0 评论 -
逻辑回归与线性回归是什么关系呢?
逻辑回归与线性回归是什么关系呢?逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。逻辑回归假设因变量 y 服从伯努利分布,而线性回归假设因变量 y 服从高斯分布。 因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。原创 2021-08-11 11:12:37 · 2410 阅读 · 1 评论