
AI科研/相关文章/科研方向/科研工具
文章平均质量分 87
AI科研相关文章,相关科研工具,科研方向
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
[CCF期刊]CCF发布计算领域高质量科技期刊分级目录
还需要说明的是,由于领域的交叉和视角的差异,同一刊物在不同领域存在认识上的差异是正常的,本列表也只代表了CCF对这些刊物的看法,不能保证业界完全同意。以刊物刊发的文章品质及刊物的学术贡献为主要标准,同时考虑文献计量指标和同行评议情况,采取定量与定性相结合的遴选原则,但以定性为主,即一线资深专家的判断为主,避免唯指标论。等不同类型科技期刊的功能,充分发挥CCF的学术公信力和影响力,按照领域学科特色、发展目标,引导国内科技期刊坚持以价值导向办刊、引导期刊专注提升学术水平、引导优秀科研成果在高质量中国期刊首发。原创 2024-07-14 13:11:30 · 1558 阅读 · 0 评论 -
Sakana AI |AI Scientist爆火背后的技术详解以及优缺点分析AINLP 2024年08月15日 22:10 江苏以下文章来源于NLP PaperWeekly ,作者NLP Pa
• 尽管前沿模型已被用作人类科学家的辅助工具,如头脑风暴、编写代码或预测任务,但它们仍仅完成了科学过程的一小部分。• 本文提出了第一个全面的框架,用于实现完全自动化的科学发现,使前沿大型语言模型能够独立进行研究并传达其发现。• 本文介绍了“AI科学家”框架,这是第一个全面自动化的科学发现框架,其利用前沿大型语言模型进行独立研究并完成最终Paper。• 该框架包括想法生成、实验迭代和论文撰写三个阶段。通过在机器学习的三个子领域中的应用实验,原创 2024-10-22 15:19:52 · 903 阅读 · 0 评论 -
[代码模型精读]CodeX模型:Evaluating Large Language Models Trained on Code
长链操作和变量绑定安全性和潜在的社会影响CodeBERT和PyMT5。原创 2024-10-16 22:18:17 · 1043 阅读 · 0 评论 -
[水刊JIIS]KIMedQA: towards building knowledge-enhanced medical QA models答系统(KIMedQA),旨在通过结合知识图谱(KG)和预训
这篇论文**《KIMedQA: towards building knowledge-enhanced medical QA models》**提出了一种新的知识增强医学问答系统(KIMedQA),旨在通过结合知识图谱(KG)和预训练语言模型(LM)来提高医学问答系统的性能。原创 2024-10-16 22:02:04 · 483 阅读 · 0 评论 -
【水刊JIIS】Business Process Large Language Model(BPLLM)的框架
这篇论文提出了一个名为Business Process Large Language Model(BPLLM)的框架,旨在通过与人类工作人员进行可操作对话来增强业务流程管理(BPMS)系统。原创 2024-10-16 18:31:01 · 109 阅读 · 0 评论 -
图灵奖得主Bengio等人新作:注意力可被视为RNN,新模型媲美Transformer,但超级省内存
为了解决上述问题,作者提出了一种基于注意力的高效模块,它能够利用 GPU 并行性,同时又能高效更新。首先,作者在第 3.1 节中表明,注意力可被视为一种 RNN,具有高效计算多对一 RNN(图 1a)输出的特殊能力。利用注意力的 RNN 形式,作者进一步说明,基于注意力的流行模型,如 Transformer(图 1b)和 Perceiver(图 1c),可以被视为 RNN。然而,与传统的 RNN 不同的是,这些模型无法根据新 token 有效地更新自身,从而限制了它们。原创 2024-05-27 16:38:18 · 1195 阅读 · 0 评论 -
神经网络中的动态路由与信息聚合 - 胶囊网络+Information Aggregation via Dynamic Routing for Sequence Encoding
文章提出了一种新的聚合机制,通过动态路由策略,将变长的文本序列编码为固定大小的向量。动态路由策略动态决定从每个词汇中传递多少信息以及哪些信息需要传递到最终的文本序列编码中。与传统的最大池化或平均池化方法相比,动态路由策略能够根据最终编码向量的状态来细化信息传递。文章设计了两种动态路由策略用于将RNN/CNN编码层的输出聚合为最终的编码向量。一种是标准动态路由策略,与胶囊网络中的动态路由类似,源节点决定了向不同目标节点发送多少信息。另一种是反向动态路由策略,原创 2024-05-14 17:41:14 · 1279 阅读 · 0 评论 -
gct pytorch
该 Python 类设计用于将电子健康记录(EHR)中的原始特征数据转换为适合用于深度学习模型的格式,特别是在论文关注学习 EHR 数据隐藏结构的背景下。这个类是一个自定义的神经网络模块,用于从电子健康记录(EHR)中嵌入不同类型的特征。的类,它继承自 PyTorch 的。这段Python代码定义了一个名为。每种类型的嵌入应用层。原创 2024-05-07 23:27:39 · 467 阅读 · 0 评论 -
[论文翻译]:KAN:科尔莫戈洛夫-阿诺德网络
受科尔莫戈洛夫-阿诺德表示定理的启发,我们提出了科尔莫戈洛夫-阿诺德网络(KANs)作为多层感知器(MLPs)的有希望的替代方案。虽然MLPs在节点(“神经元”)上有固定的激活函数,但KANs在边缘(“权重”)上有可学习的激活函数。KANs根本没有线性权重 - 每个权重参数都被替换为参数化为样条的单变量函数。我们展示了这个看似简单的改变使得KANs在准确性和可解释性方面优于MLPs。在准确性方面,较小的KANs在数据拟合和PDE求解方面可以达到与较大的MLPs相媲美甚至更好的准确性。原创 2024-05-04 16:40:17 · 3428 阅读 · 0 评论 -
认知,大脑的一种涌现属性
根据这一被Miller称为"空间计算"的理论,贝塔可以建立任务的一般规则(例如,打开密码锁所需的来回转动),即使具体的信息内容可能会发生变化(例如,当密码发生变化时会出现新的数字)。这就像是大脑中的“波浪”现象,但它不是由观众席上的人们创造的,而是由我们大脑中的神经元们完成的。这就像是大脑中的“遥控”,可以远程操控神经元的激发。通过记录参与工作记忆游戏的动物大脑的神经活动,该实验室发现,贝塔节律携带着"自上而下"的信号,控制着伽马节律编码感官信息的时间和地点,例如动物在游戏中需要记住的图像。原创 2024-04-30 13:51:24 · 621 阅读 · 0 评论 -
[科研]如何查看是否被Scopus检索,爱思唯尔Scopus preview,www.scopus.com
如何查看是否被Scopus检索,爱思唯尔 Scopus preview。期刊排名:Scimago,原创 2024-04-30 01:09:06 · 800 阅读 · 0 评论 -
[科研]如何查看JCR分区,WOS,Web Of Science检索,Sci检索
2.可以看到WSEAS Transactions on Computer Research是Q2 二区。1.首先要有JCR账号,Wos,Web of Science检索。原创 2024-04-30 01:03:08 · 2835 阅读 · 0 评论 -
结合Transformer与GNN!图Transformer15个创新方案,无痛涨点
作者提出了一种新的神经网络编码器类别,称为DIFFORMER(基于扩散的Transformer),包括两个实例:一个具有线性复杂度的简单版本,适用于数量庞大的实例;作者提出了一种新的方法,称为谱注意力网络(SAN),它使用了一种学习位置编码(LPE),可以从拉普拉斯算子的全谱中学习节点的位置。为了解决分子表示学习中的问题,作者提出了一种名为GROVER的新框架。论文提出了一种名为Graphormer的图表示学习方法,它建立在标准的Transformer架构之上,并在广泛的图表示学习任务上取得了出色的结果。原创 2024-04-23 14:51:06 · 1622 阅读 · 0 评论 -
P vs. NP 五十年:AI正在解决不可解问题
Lance Fortnow AI科技评论 2022-01-01 12:32P和NP问题一直是计算机领域的老大难问题,那么在近50年间,人们对这个问题有什么深入的研究呢?让我们在本文中深挖这个世纪难题。作者 | Lance Fortnow编译 | Don编辑 | 青暮在1971年5月4日,伟大的计算机科学家和数学家Steve Cook就在他的论文《定理证明程序的复杂性 The Complexity of Theorem Proving Procedures》中首次向世界提出了P和NP的问题。在50年后的今天,原创 2024-04-23 08:17:16 · 1279 阅读 · 0 评论 -
大语言模型研究热点
Lion: Adversarial Distillation of Proprietary Large Language Models》提出了一种新颖的对抗性蒸馏框架,以实现更有效的知识转移,论文使用 7 万个训练数据就成功地将知识从 ChatGPT 转移到了学生模型Lion,实现了与 ChatGPT 相当的开放式生成能力;论文通过量化和知识提炼压缩模型对大模型中社会偏见的影响进行了控制研究;原创 爱吃牛油果的璐璐。原创 2024-04-17 10:18:49 · 830 阅读 · 0 评论 -
常用的一款免费流程图软件,非常强大,值得推荐draw.io
前面说过,Draw.io是一款免费的流程图绘制工具,你可以在本地或者云端创建和分享各种流程图。Draw.io不受平台限制,支持直接在网页浏览器中使用Draw.io,也可以下载客户端,或者使用Vscode、Jupyter Lab插件,你觉得哪种方便就用哪种,可以说非常的宠爱用户了。它提供了一个类似画板的直观的拖放界面,你可以通过选择预设的形状和连接线来快速构建流程图,因此具有很大的可定制空间。原创 2024-04-16 23:24:26 · 3548 阅读 · 2 评论 -
Nature子刊评论:大脑对算法的独特理解,我们是否能够理解神经算法到底是什么?
然而,现实的连续计算模型的设计可能具有挑战性,并且可能会无意中引入在有限时间内解决不可计算问题的能力。Jaeger 及其同事提出的流畅计算模型建立在这些努力的基础上,结合了可组合性的实际优势即,用更简单的算法构建更复杂的应用程序的能力)和传统计算中固有的关联,这些约束来自神经系统的物理描述。尽管如此,虽然人工神经网络是描述大脑计算的卓有成效的框架,特别是在感觉系统中,但使用针对图形处理单元 (GPU) 优化的算法来有效描述大脑的各种计算仍然存在尴尬,其中许多计算并没有立即被当前的人工智能很好地描述。原创 2024-04-14 21:37:58 · 678 阅读 · 0 评论 -
Nature子刊使用的机器学习可解释方法,教你复现
另外,比如输入参数15,大多数的点弥漫在SHAP = 0,说明它对大部分结果都没啥影响,只对小部分结果有影响。本文通过一个完整的示例说明了如何生成合成数据集、训练深度学习模型以及使用 SHAP 的 DeepExplainer 来解释模型的预测。并提供了如何利用评估指标和绘图对模型性能进行定量评估,也提供了对每个特征对模型预测的影响的定性理解,希望对您有所帮助。这就是我们揭开神秘面纱的旅程,以确保机器学习模型不仅仅是黑匣子,而是一本打开的书,我们可以阅读、理解和信任它们的故事。原创 Coronae。原创 2024-04-04 21:32:43 · 1298 阅读 · 0 评论 -
公共数据+人工智能+强化学习模型,82.9分的《自然》顶级子刊说发就发!代码也公开,接稳咯!
e,f. 读者研究结果:比较了89名皮肤科医生在无人工智能支持(-AI)、使用SL模型支持(+SL)和使用RL模型支持(+RL)的情况下的敏感性(e)和最佳管理决策的频率(f)。4. RL模型在高风险患者监测场景的应用:作者将RL模型应用于高风险患者的监测场景,通过逐个患者的所有病变图像,以最大化每个患者的累积奖励,展示了模型的实际应用。1. 定义RL决策支持模型:首先,作者明确定义了一个基于RL的决策支持模型,并通过与监督学习(SL)模型的比较,突显了RL模型的优越性。原创 2024-04-04 21:22:42 · 977 阅读 · 0 评论 -
图神经网络自监督学习 之 SimGRACE
人工智能、因果推断、可解释性的小学生目录收起文章名称核心要点方法细节SimGRACE方法架构SimGRACE理论分析AT-SimGRACE的鲁棒性证明文章旨在解决现有在图对比学习中需要依赖大量试验和人工经验针对数据集构造增广视图,并且可能在增广不当时导致语义变化的问题,基于扰动后的encoder可以保持图数据语义的分析和发现,提出无需「图数据增广」的对比学习框架SimGRACE,该方法利用不同的图编码器作为,比较两个不同编码器扰动后得到的视图之间的语义相似度。原创 2024-03-29 15:27:50 · 1082 阅读 · 0 评论 -
顶会新潮!GNN结合LLMs的三大创新思路!新SOTA准确率提升10倍
学姐上海LLMs在处理NLP任务方面表现出色,而GNNs在挖掘和分析复杂关系数据(图数据)方面展现出其卓越的能力。这种趋势催生了将这两种技术整合的研究兴趣,为解决更多领域的实际问题。GNN+LLMs可以发挥二者的互补优势,实现更全面的数据处理和分析,以便构建更大的模型,获得更好的性能。通用图大模型GraphGPTGraphGPT通过与图结构的文本信息进行对齐,结合自监督学习的图结构信号和任务特定的图指令,引导语言模型在理解复杂图结构和提高在不同任务中的适应性方面取得了显著的改进。原创 2024-03-25 16:21:33 · 1795 阅读 · 0 评论 -
神经符号学习: 神经网络+逻辑推理
神经符号学习,目标是结合深度神经网络(DNNs)的感知能力和符号推理系统的推理能力。旨在结合神经感知与符号逻辑,但目前的研究仅将它们串联并分别优化,未能充分利用它们之间的相互增强信息。本文提出了一种名为DeepLogic的深度学习框架,用于解决具有逻辑推理和神经感知双重任务的问题。本文贡献如下:提出具有理论收敛保证的DeepLogic框架,该框架进行神经感知和逻辑推理的联合学习,使它们可以相互增强,以提高神经符号推理的性能和可解释性。提出源自一阶逻辑的深度逻辑模块(DLM)原创 2024-03-25 14:47:38 · 1749 阅读 · 0 评论 -
大模型与医学人工智能
对于理解复杂的癌症生物学,人工智能的潜在益处的研究已经得到了广泛应用深度学习和机器学习在医疗领域以及高度专业化的癌症数据集的可用性的推动。在这里,我们回顾了新的人工智能方法以及它们在肿瘤学中的应用。我们描述了人工智能如何在癌症治疗的检测、预后和管理中使用,并介绍了在肿瘤学诊所中使用最新的大型语言模型如ChatGPT。我们强调了人工智能在组学数据类型上的应用,并提供了关于如何将各种数据类型结合起来创建决策支持工具的观点。我们还评估了应用人工智能在精准肿瘤学中的现有限制和挑战。原创 2024-03-25 14:00:13 · 1033 阅读 · 0 评论 -
[Nature AI ]扩展深度学习以促进材料发现Scaling deep learning for materials discovery
自然 体积 624、 页面80–85 ( 2023 )引用这篇文章175k访问量34 次引用第763章指标细节新型功能材料能够实现从清洁能源到信息处理等技术应用的根本性突破1,2,3,4,5,6,7,8,9,10,11 。从微芯片到电池和光伏发电,无机晶体的发现一直受到昂贵的试错方法的瓶颈。与此同时,随着数据和计算的增加,语言、视觉和生物学的深度学习模型展示了新兴的预测能力12 , 13 , 14。在这里,我们展示了大规模训练的图网络可以达到前所未有的泛化水平,从而将材料发现的效率提高一个数量级。以原创 2024-03-23 21:25:04 · 1331 阅读 · 0 评论